Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Neurosci ; 42(6): 1090-1103, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34980636

RESUMO

Strong inhibitory synaptic gating of dentate gyrus granule cells (GCs), attributed largely to fast-spiking parvalbumin interneurons (PV-INs), is essential to maintain sparse network activity needed for dentate dependent behaviors. However, the contribution of PV-INs to basal and input-driven sustained synaptic inhibition in GCs and semilunar granule cells (SGCs), a sparse morphologically distinct dentate projection neuron subtype, is currently unknown. In studies conducted in hippocampal slices from mice, we find that although basal IPSCs are more frequent in SGCs and optical activation of PV-INs reliably elicited IPSCs in both GCs and SGCs, optical suppression of PV-INs failed to reduce IPSC frequency in either cell type. Amplitude and kinetics of IPSCs evoked by perforant path (PP) activation were not different between GCs and SGCs. However, the robust increase in sustained polysynaptic IPSCs elicited by paired afferent stimulation was lower in SGCs than in simultaneously recorded GCs. Optical suppression of PV-IN selectively reduced sustained IPSCs in SGCs but not in GCs. These results demonstrate that PV-INs, while contributing minimally to basal synaptic inhibition in both GCs and SGCs in slices, mediate sustained feedback inhibition selectively in SGCs. The temporally selective blunting of activity-driven sustained inhibitory gating of SGCs could support their preferential and persistent recruitment during behavioral tasks.SIGNIFICANCE STATEMENT Our study identifies that feedback inhibitory regulation of dentate semilunar granule cells (SGCs), a sparse and functionally distinct class of projection neurons, differs from that of the classical projection neurons, GCs. Notably, we demonstrate relatively lower activity-dependent increase in sustained feedback inhibitory synaptic inputs to SGCs when compared with GCs which would facilitate their persistent activity and preferential recruitment as part of memory ensembles. Since dentate GC activity levels during memory processing are heavily shaped by basal and feedback inhibition, the fundamental differences in basal and evoked sustained inhibition between SGCs and GCs characterized here provide a framework to reorganize current understanding of the dentate circuit processing.


Assuntos
Giro Denteado/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Animais , Potenciais Pós-Sinápticos Inibidores/fisiologia , Interneurônios/fisiologia , Camundongos , Parvalbuminas/metabolismo , Sinapses/fisiologia
2.
J Cell Sci ; 134(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34515305

RESUMO

The advent of modern single-cell biology has revealed the striking molecular diversity of cell populations once thought to be more homogeneous. This newly appreciated complexity has made intersectional genetic approaches essential to understanding and probing cellular heterogeneity at the functional level. Here, we build on previous knowledge to develop a simple adeno-associated virus (AAV)-based approach to define specific subpopulations of cells by Boolean exclusion logic (AND NOT). This expression by Boolean exclusion (ExBoX) system encodes for a gene of interest that is turned on by a particular recombinase (Cre or FlpO) and turned off by another. ExBoX allows for the specific transcription of a gene of interest in cells expressing only the activating recombinase, but not in cells expressing both. We show the ability of the ExBoX system to tightly regulate expression of fluorescent reporters in vitro and in vivo, and further demonstrate the adaptability of the system by achieving expression of a variety of virally delivered coding sequences in the mouse brain. This simple strategy will expand the molecular toolkit available for cell- and time-specific gene expression in a variety of systems.


Assuntos
Neurônios , Recombinases , Animais , Expressão Gênica , Camundongos , Recombinases/genética
3.
Ann Neurol ; 87(4): 497-515, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32031699

RESUMO

OBJECTIVE: Traumatic brain injury is a major risk factor for acquired epilepsies, and understanding the mechanisms underlying the early pathophysiology could yield viable therapeutic targets. Growing evidence indicates a role for inflammatory signaling in modifying neuronal excitability and promoting epileptogenesis. Here we examined the effect of innate immune receptor Toll-like receptor 4 (TLR4) on excitability of the hippocampal dentate gyrus and epileptogenesis after brain injury. METHODS: Slice and in vivo electrophysiology and Western blots were conducted in rats subject to fluid percussion brain injury or sham injury. RESULTS: The studies identify that TLR4 signaling in neurons augments dentate granule cell calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (CP-AMPAR) currents after brain injury. Blocking TLR4 signaling in vivo shortly after brain injury reduced dentate network excitability and seizure susceptibility. When blocking of TLR4 signaling after injury was delayed, however, this treatment failed to reduce postinjury seizure susceptibility. Furthermore, TLR4 signal blocking was less efficacious in limiting seizure susceptibility when AMPAR currents, downstream targets of TLR4 signaling, were transiently enhanced. Paradoxically, blocking TLR4 signaling augmented both network excitability and seizure susceptibility in uninjured controls. Despite the differential effect on seizure susceptibility, TLR4 antagonism suppressed cellular inflammatory responses after injury without impacting sham controls. INTERPRETATION: These findings demonstrate that independently of glia, the immune receptor TLR4 directly regulates post-traumatic neuronal excitability. Moreover, the TLR4-dependent early increase in dentate excitability is causally associated with epileptogenesis. Identification and selective targeting of the mechanisms underlying the aberrant TLR4-mediated increase in CP-AMPAR signaling after injury may prevent epileptogenesis after brain trauma. ANN NEUROL 2020;87:497-515.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Giro Denteado/metabolismo , Epilepsia/metabolismo , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Western Blotting , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Cálcio/metabolismo , Giro Denteado/citologia , Eletroencefalografia , Epilepsia/etiologia , Epilepsia/fisiopatologia , Hipocampo/citologia , Hipocampo/metabolismo , Masculino , Técnicas de Patch-Clamp , Cultura Primária de Células , Ratos , Sulfonamidas/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores
4.
Brain Behav Immun ; 88: 381-395, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32259563

RESUMO

The mechanisms by which the neurophysiological and inflammatory responses to brain injury contribute to memory impairments are not fully understood. Recently, we reported that the innate immune receptor, toll-like receptor 4 (TLR4) enhances AMPA receptor (AMPAR) currents and excitability in the dentate gyrus after fluid percussion brain injury (FPI) while limiting excitability in controls. Here, we examine the cellular mediators underlying TLR4 regulation of dentate excitability and its impact on memory performance. In ex vivo slices, astrocytic and microglial metabolic inhibitors selectively abolished TLR4 antagonist modulation of excitability in controls, but not in rats after FPI, demonstrating that glial signaling contributes to TLR4 regulation of excitability in controls. In glia-depleted neuronal cultures from naïve mice, TLR4 ligands bidirectionally modulated AMPAR charge transfer consistent with neuronal TLR4 regulation of excitability, as observed after brain injury. In vivo TLR4 antagonism reduced early post-injury increases in mediators of MyD88-dependent and independent TLR4 signaling without altering expression in controls. Blocking TNFα, a downstream effector of TLR4, mimicked effects of TLR4 antagonist and occluded TLR4 agonist modulation of excitability in slices from both control and FPI rats. Functionally, transiently blocking TLR4 in vivo improved impairments in working memory observed one week and one month after FPI, while the same treatment impaired memory function in uninjured controls. Together these data identify that distinct cellular signaling mechanisms converge on TNFα to mediate TLR4 modulation of network excitability in the uninjured and injured brain and demonstrate a role for TLR4 in regulation of working memory function.


Assuntos
Lesões Encefálicas , Receptor 4 Toll-Like , Animais , Memória de Curto Prazo , Camundongos , Neurônios/metabolismo , Ratos , Receptores de AMPA , Receptor 4 Toll-Like/metabolismo
5.
J Neurosci Res ; 97(11): 1335-1344, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-29193309

RESUMO

Epilepsy, characterized by recurrent seizures and abnormal electrical activity in the brain, is one of the most prevalent brain disorders. Over two million people in the United States have been diagnosed with epilepsy and 3% of the general population will be diagnosed with it at some point in their lives. While most developmental epilepsies occur due to genetic predisposition, a class of "acquired" epilepsies results from a variety of brain insults. A leading etiological factor for epilepsy that is currently on the rise is traumatic brain injury (TBI), which accounts for up to 20% of all symptomatic epilepsies. Remarkably, the presence of an identified early insult that constitutes a risk for development of epilepsy provides a therapeutic window in which the pathological processes associated with brain injury can be manipulated to limit the subsequent development of recurrent seizure activity and epilepsy. Recent studies have revealed diverse pathologies, including enhanced excitability, activated immune signaling, cell death, and enhanced neurogenesis within a week after injury, suggesting a period of heightened adaptive and maladaptive plasticity. An integrated understanding of these processes and their cellular and molecular underpinnings could lead to novel targets to arrest epileptogenesis after trauma. This review attempts to highlight and relate the diverse early changes after trauma and their role in development of epilepsy and suggests potential strategies to limit neurological complications in the injured brain.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Encéfalo/fisiopatologia , Epilepsia/fisiopatologia , Animais , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Epilepsia/etiologia , Epilepsia/metabolismo , Humanos , Neurogênese , Neurônios/fisiologia , Transdução de Sinais
6.
Brain Behav Immun ; 59: 190-199, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27614125

RESUMO

Traumatic brain injury (TBI), even at mild levels, can activate matrix metalloproteinases (MMPs) and the induction of neuroinflammation that can result in blood brain barrier breakdown and neurodegeneration. MMP2 has a significant role in neuroinflammation and neurodegeneration by modulating the chemokine CXCL12α (stromal cell derived factor SDF-1α) signaling pathway and the induction of apoptosis. SDF-1α is responsible for cell proliferation and differentiation throughout the nervous system and is also implicated in various neurodegenerative illnesses. We hypothesized that TBI leads to MMP2 activation and cleavage of the N-terminal 4 amino acid residues of CXCL12α with generation of the highly neurotoxic fragment SDF-1(5-67). Using an in vitro stretch-injury model of rat neuronal cultures and the in vivo fluid percussion injury (FPI) model in rats, we found that oxidative stress has a significant role in the activation of MMP2. This is initiated by the induction of free radical generating enzyme NADPH oxidase 1 (NOX1). Induction of NOX1 correlated well with the signatures of oxidative stress marker, 4HNE in the injured neuronal cultures and cerebral cortex of rats. Further, using MMP2 siRNA and pharmacological MMP2 inhibitor, ARP100, we established the neurodegenerative role of MMP2 in cleaving SDF-1α to a neurotoxic fragment SDF-1(5-67). By immunofluorescence, western blotting and TUNEL experiments, we show the cleaved form of SDF leads to apoptotic cell death in neurons. This work identifies a new potential therapeutic target to reduce the complications of brain damage in TBI.


Assuntos
Lesões Encefálicas Traumáticas/enzimologia , Quimiocina CXCL12/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Degeneração Neural/enzimologia , Degeneração Neural/genética , Animais , Apoptose/efeitos dos fármacos , Lesões Encefálicas Traumáticas/genética , Caspase 3/biossíntese , Caspase 3/genética , Sobrevivência Celular/genética , Células Cultivadas , Quimiocina CXCL12/genética , Ativação Enzimática , Técnicas de Silenciamento de Genes , Metaloproteinase 2 da Matriz/genética , Inibidores de Metaloproteinases de Matriz/farmacologia , NADPH Oxidase 1/biossíntese , NADPH Oxidase 1/genética , Neurônios/efeitos dos fármacos , Estresse Oxidativo , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley
7.
Cereb Cortex ; 26(11): 4229-4314, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-26400918

RESUMO

Strong perisomatic inhibition by fast-spiking basket cells (FS-BCs) regulates dentate throughput. Homotypic FS-BC interconnections that support gamma oscillations, and heterotypic inputs from diverse groups of interneurons that receive extensive neurochemical regulation, together, shape FS-BC activity patterns. However, whether seizures precipitate functional changes in inhibitory networks and contribute to abnormal network activity in epilepsy is not known. In the first recordings from dentate interneuronal pairs in a model of temporal lobe epilepsy, we demonstrate that status epilepticus (SE) selectively compromises GABA release at synapses from dentate accommodating interneurons (AC-INs) to FS-BCs, while efficacy of homotypic FS-BC synapses is unaltered. The functional decrease in heterotypic cannabinoid receptor type 1 (CB1R)-sensitive inhibition of FS-BCs resulted from enhanced baseline GABAB-mediated suppression of synaptic release after SE. The frequency of CB1R-sensitive inhibitory synaptic events in FS-BCs was depressed early after SE induction and remained reduced in epileptic rats. In biologically based simulations of heterogeneous inhibitory networks and excitatory-inhibitory cell networks, experimentally identified decrease in reliability of AC-IN to FS-BCs synaptic release reduced theta power and theta-gamma coupling and enhanced gamma coherence. Thus, the experimentally identified functional reduction in heterotypic inhibition of FS-BCs can contribute to compromised network oscillations in epilepsy and could precipitate memory and cognitive co-morbidities.

8.
Neurobiol Dis ; 89: 23-35, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26804027

RESUMO

Altered inhibition is a salient feature of hippocampal network reorganization in epilepsy. Hippocampal pyramidal cells and dentate granule cells show specific reduction in cannabinoid receptor type 1 (CB1R)-sensitive GABAergic inputs in experimental epilepsy. In the dentate gyrus, CB1Rs regulate synaptic release from accommodating interneurons (AC-INs) with adapting firing characteristics and axonal projections in the molecular layer, but not from fast-spiking basket cells (FS-BCs). However, it is not known whether the intrinsic physiology and synaptic inhibition of AC-INs responsible for CB1R-sensitive inhibition is altered in epilepsy. Using the pilocarpine-induced status epilepticus (SE) model of epilepsy, we find that the basic physiological characteristics of AC-INs in epileptic rats are not different from age-matched controls. In paired interneuronal recordings, the amplitude of unitary inhibitory synaptic currents (uIPSCs) between AC-INs doubled after SE. Non-stationary noise analysis revealed that the post-SE strengthening of synapses between AC-INs resulted from an increase in postsynaptic receptors. Baseline synaptic release and CB1R antagonist enhancement of release at synapses between AC-INs were not different between control and post-SE rats. Additionally, uIPSC amplitude in FS-BCs to AC-INs pairs was unchanged after SE indicating input-specific microcircuit alterations in inhibitory inputs to AC-INs. At the network level, AC-INs showed no reduction in spontaneous and miniature inhibitory synaptic current (sIPSC or mIPSC) frequency or amplitude after SE. However, AC-IN mIPSC amplitude was persistently enhanced in post-SE and epileptic rats. CB1R agonist reduced the amplitude and suppressed a greater proportion of sIPSCs in AC-INs from post-SE and epileptic rats demonstrating a novel, cell-type specific increase in CB1R-sensitive inhibition of AC-INs after SE. This unique post-SE strengthening of inhibition between AC-INs could lead to activity-dependent suppression of AC-IN firing and compromise dentate CB1R-sensitive inhibition in epilepsy.


Assuntos
Giro Denteado/fisiopatologia , Potenciais Pós-Sinápticos Inibidores , Interneurônios/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Estado Epiléptico/fisiopatologia , Sinapses/fisiologia , Potenciais de Ação , Animais , Giro Denteado/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Masculino , Pilocarpina , Piperidinas/administração & dosagem , Pirazóis/administração & dosagem , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/antagonistas & inibidores , Estado Epiléptico/induzido quimicamente , Sinapses/efeitos dos fármacos
9.
Neurobiol Dis ; 74: 240-53, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25497689

RESUMO

Concussive brain injury results in neuronal degeneration, microglial activation and enhanced excitability in the hippocampal dentate gyrus, increasing the risk for epilepsy and memory dysfunction. Endogenous molecules released during injury can activate innate immune responses including toll-like receptor 4 (TLR4). Recent studies indicate that immune mediators can modulate neuronal excitability. Since non-specific agents that reduce TLR4 signaling can limit post-traumatic neuropathology, we examined whether TLR4 signaling contributes to early changes in dentate excitability after brain injury. Concussive brain injury caused a transient increase in hippocampal TLR4 expression within 4h, which peaked at 24h. Post-injury increase in TLR4 expression in the dentate gyrus was primarily neuronal and persisted for one week. Acute, in vitro treatment with TLR4 ligands caused bidirectional modulation of dentate excitability in control and brain-injured rats, with a reversal in the direction of modulation after brain injury. TLR4 antagonists decreased, and agonist increased, afferent-evoked dentate excitability one week after brain injury. NMDA receptor antagonist did not occlude the ability of LPS-RS, a TLR4 antagonist, to decrease post-traumatic dentate excitability. LPS-RS failed to modulate granule cell NMDA EPSCs but decreased perforant path-evoked non-NMDA EPSC peak amplitude and charge transfer in both granule cells and mossy cells. Our findings indicate an active role for TLR4 signaling in early post-traumatic dentate hyperexcitability. The novel TLR4 modulation of non-NMDA glutamatergic currents, identified herein, could represent a general mechanism by which immune activation influences neuronal excitability in neurological disorders that recruit sterile inflammatory responses.


Assuntos
Concussão Encefálica/fisiopatologia , Giro Denteado/fisiopatologia , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciais Sinápticos/fisiologia , Receptor 4 Toll-Like/metabolismo , Animais , Giro Denteado/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Potenciais Sinápticos/efeitos dos fármacos , Fatores de Tempo , Técnicas de Cultura de Tecidos , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/antagonistas & inibidores
10.
Hippocampus ; 25(8): 884-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25603947

RESUMO

Activity of the dentate gyrus, which gates information flow to the hippocampus, is under tight inhibitory regulation by interneurons with distinctive axonal projections, intrinsic and synaptic characteristics and neurochemical identities. Total molecular layer cells (TML-Cs), a class of morphologically distinct GABAergic neurons with axonal projections across the molecular layer, are among the most frequent interneuronal type in the dentate subgranular region. However, little is known about their synaptic and neurochemical properties. We demonstrate that synapses from morphologically identified TML-Cs to dentate interneurons are characterized by low release probability, facilitating short-term dynamics and asynchronous release. TML-Cs consistently show somatic and axonal labeling for the cannabinoid receptor type 1 (CB1 R) yet fail to express cholecystokinin (CCK) indicating their distinctive neurochemical identity. In paired recordings, the release probability at synapses between TML-Cs was increased by the CB1 R antagonist AM251, demonstrating baseline endocannabinoid regulation of TML-C synapses. Apart from defining the synaptic and neurochemical features of TML-Cs, our findings reveal the morphological identity of a class of dentate CB1 R-positive neurons that do not express CCK. Our findings indicate that TML-Cs can mediate cannabinoid sensitive feed-forward and feedback inhibition of dentate perforant path inputs.


Assuntos
Canabinoides/metabolismo , Giro Denteado/citologia , Interneurônios/fisiologia , Inibição Neural/fisiologia , Sinapses/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Biofísica , Moduladores de Receptores de Canabinoides/farmacologia , Colecistocinina/metabolismo , Estimulação Elétrica , Técnicas In Vitro , Interneurônios/efeitos dos fármacos , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Inibição Neural/efeitos dos fármacos , Parvalbuminas/metabolismo , Técnicas de Patch-Clamp , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/metabolismo , Estatísticas não Paramétricas , Sinapses/efeitos dos fármacos
11.
J Neurosci Res ; 92(10): 1350-1361, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24799156

RESUMO

Traumatic brain injury (TBI) can occur from physical trauma from a wide spectrum of insults ranging from explosions to falls. The biomechanics of the trauma can vary in key features, including the rate and magnitude of the insult. Although the effect of peak injury pressure on neurological outcome has been examined in the fluid percussion injury (FPI) model, it is unknown whether differences in rate of rise of the injury waveform modify cellular and physiological changes after TBI. Using a programmable FPI device, we examined juvenile rats subjected to a constant peak pressure at two rates of injury: a standard FPI rate of rise and a faster rate of rise to the same peak pressure. Immediate postinjury assessment identified fewer seizures and relatively brief loss of consciousness after fast-rise injuries than after standard-rise injuries at similar peak pressures. Compared with rats injured at standard rise, fewer silver-stained injured neuronal profiles and degenerating hilar neurons were observed 4-6 hr after fast-rise FPI. However, 1 week postinjury, both fast- and standard-rise FPI resulted in hilar cell loss and enhanced perforant path-evoked granule cell field excitability compared with sham controls. Notably, the extent of neuronal loss and increase in dentate excitability were not different between rats injured at fast and standard rates of rise to peak pressure. Our data indicate that reduced cellular damage and improved immediate neurological outcome after fast rising primary concussive injuries mask the severity of the subsequent cellular and neurophysiological pathology and may be unreliable as a predictor of prognosis.


Assuntos
Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Hipocampo/patologia , Percussão/efeitos adversos , Análise de Variância , Animais , Animais Recém-Nascidos , Lesões Encefálicas/complicações , Lesões Encefálicas/mortalidade , Ondas Encefálicas/fisiologia , Distribuição de Qui-Quadrado , Modelos Animais de Doenças , Fluoresceínas , Hipocampo/metabolismo , Técnicas In Vitro , Neurônios/metabolismo , Neurônios/patologia , Fosfopiruvato Hidratase/metabolismo , Ratos , Convulsões/etiologia , Fatores de Tempo
12.
bioRxiv ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38370800

RESUMO

Dysregulation of development, migration, and function of interneurons, collectively termed interneuronopathies, have been proposed as a shared mechanism for autism spectrum disorders (ASDs) and childhood epilepsy. Neuropilin-2 (Nrp2), a candidate ASD gene, is a critical regulator of interneuron migration from the median ganglionic eminence (MGE) to the pallium, including the hippocampus. While clinical studies have identified Nrp2 polymorphisms in patients with ASD, whether dysregulation of Nrp2-dependent interneuron migration contributes to pathogenesis of ASD and epilepsy has not been tested. We tested the hypothesis that the lack of Nrp2 in MGE-derived interneuron precursors disrupts the excitation/inhibition balance in hippocampal circuits, thus predisposing the network to seizures and behavioral patterns associated with ASD. Embryonic deletion of Nrp2 during the developmental period for migration of MGE derived interneuron precursors (iCKO) significantly reduced parvalbumin, neuropeptide Y, and somatostatin positive neurons in the hippocampal CA1. Consequently, when compared to controls, the frequency of inhibitory synaptic currents in CA1 pyramidal cells was reduced while frequency of excitatory synaptic currents was increased in iCKO mice. Although passive and active membrane properties of CA1 pyramidal cells were unchanged, iCKO mice showed enhanced susceptibility to chemically evoked seizures. Moreover, iCKO mice exhibited selective behavioral deficits in both preference for social novelty and goal-directed learning, which are consistent with ASD-like phenotype. Together, our findings show that disruption of developmental Nrp2 regulation of interneuron circuit establishment, produces ASD-like behaviors and enhanced risk for epilepsy. These results support the developmental interneuronopathy hypothesis of ASD epilepsy comorbidity.

13.
J Neurosci ; 32(7): 2523-37, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22396425

RESUMO

Brain injury is an etiological factor for temporal lobe epilepsy and can lead to memory and cognitive impairments. A recently characterized excitatory neuronal class in the dentate molecular layer, semilunar granule cell (SGC), has been proposed to regulate dentate network activity patterns and working memory formation. Although SGCs, like granule cells, project to CA3, their typical sustained firing and associational axon collaterals suggest that they are functionally distinct from granule cells. We find that brain injury results in an enhancement of SGC excitability associated with an increase in input resistance 1 week after trauma. In addition to prolonging miniature and spontaneous IPSC interevent intervals, brain injury significantly reduces the amplitude of tonic GABA currents in SGCs. The postinjury decrease in SGC tonic GABA currents is in direct contrast to the increase observed in granule cells after trauma. Although our observation that SGCs express Prox1 indicates a shared lineage with granule cells, data from control rats show that SGC tonic GABA currents are larger and sIPSC interevent intervals shorter than in granule cells, demonstrating inherent differences in inhibition between these cell types. GABA(A) receptor antagonists selectively augmented SGC input resistance in controls but not in head-injured rats. Moreover, post-traumatic differences in SGC firing were abolished in GABA(A) receptor blockers. Our data show that cell-type-specific post-traumatic decreases in tonic GABA currents boost SGC excitability after brain injury. Hyperexcitable SGCs could augment dentate throughput to CA3 and contribute substantively to the enhanced risk for epilepsy and memory dysfunction after traumatic brain injury.


Assuntos
Lesões Encefálicas/fisiopatologia , Giro Denteado/citologia , Giro Denteado/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Animais , Lesões Encefálicas/patologia , Regulação para Baixo/fisiologia , Masculino , Ratos , Ratos Wistar , Regulação para Cima/fisiologia
14.
J Neurophysiol ; 109(7): 1746-63, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23324316

RESUMO

Temporal lobe epilepsy is associated with loss of interneurons and inhibitory dysfunction in the dentate gyrus. While status epilepticus (SE) leads to changes in granule cell inhibition, whether dentate basket cells critical for regulating granule cell feedforward and feedback inhibition express tonic GABA currents (I(GABA)) and undergo changes in inhibition after SE is not known. We find that interneurons immunoreactive for parvalbumin in the hilar-subgranular region express GABAA receptor (GABA(A)R) δ-subunits, which are known to underlie tonic I(GABA). Dentate fast-spiking basket cells (FS-BCs) demonstrate baseline tonic I(GABA) blocked by GABA(A)R antagonists. In morphologically and physiologically identified FS-BCs, tonic I(GABA) is enhanced 1 wk after pilocarpine-induced SE, despite simultaneous reduction in spontaneous inhibitory postsynaptic current (sIPSC) frequency. Amplitude of tonic I(GABA) in control and post-SE FS-BCs is enhanced by 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), demonstrating the contribution of GABA(A)R δ-subunits. Whereas FS-BC resting membrane potential is unchanged after SE, perforated-patch recordings from FS-BCs show that the reversal potential for GABA currents (E(GABA)) is depolarized after SE. In model FS-BCs, increasing tonic GABA conductance decreased excitability when E(GABA) was shunting and increased excitability when E(GABA) was depolarizing. Although simulated focal afferent activation evoked seizurelike activity in model dentate networks with FS-BC tonic GABA conductance and shunting E(GABA), excitability of identical networks with depolarizing FS-BC E(GABA) showed lower activity levels. Thus, together, post-SE changes in tonic I(GABA) and E(GABA) maintain homeostasis of FS-BC activity and limit increases in dentate excitability. These findings have implications for normal FS-BC function and can inform studies examining comorbidities and therapeutics following SE.


Assuntos
Potenciais de Ação , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Receptores de GABA-A/metabolismo , Estado Epiléptico/fisiopatologia , Ácido gama-Aminobutírico/metabolismo , Animais , Giro Denteado/patologia , Giro Denteado/fisiopatologia , Agonistas GABAérgicos/farmacologia , Neurônios GABAérgicos/fisiologia , Homeostase , Interneurônios/fisiologia , Masculino , Potenciais da Membrana , Pilocarpina/toxicidade , Ratos , Ratos Wistar , Estado Epiléptico/induzido quimicamente
15.
Chaos ; 23(4): 046109, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24387588

RESUMO

Gamma frequency oscillations have been proposed to contribute to memory formation and retrieval. Fast-spiking basket cells (FS-BCs) are known to underlie development of gamma oscillations. Fast, high amplitude GABA synapses and gap junctions have been suggested to contribute to gamma oscillations in FS-BC networks. Recently, we identified that, apart from GABAergic synapses, FS-BCs in the hippocampal dentate gyrus have GABAergic currents mediated by extrasynaptic receptors. Our experimental studies demonstrated two specific changes in FS-BC GABA currents following experimental seizures [Yu et al., J. Neurophysiol. 109, 1746 (2013)]: increase in the magnitude of extrasynaptic (tonic) GABA currents and a depolarizing shift in GABA reversal potential (E(GABA)). Here, we use homogeneous networks of a biophysically based model of FS-BCs to examine how the presence of extrasynaptic GABA conductance (g(GABA-extra)) and experimentally identified, seizure-induced changes in g(GABA-extra) and E(GABA) influence network activity. Networks of FS-BCs interconnected by fast GABAergic synapses developed synchronous firing in the dentate gamma frequency range (40-100 Hz). Systematic investigation revealed that the biologically realistic range of 30 to 40 connections between FS-BCs resulted in greater coherence in the gamma frequency range when networks were activated by Poisson-distributed dendritic synaptic inputs rather than by homogeneous somatic current injections, which were balanced for FS-BC firing frequency in unconnected networks. Distance-dependent conduction delay enhanced coherence in networks with 30-40 FS-BC interconnections while inclusion of gap junctional conductance had a modest effect on coherence. In networks activated by somatic current injections resulting in heterogeneous FS-BC firing, increasing g(GABA-extra) reduced the frequency and coherence of FS-BC firing when E(GABA) was shunting (-74 mV), but failed to alter average FS-BC frequency when E(GABA) was depolarizing (-54 mV). When FS-BCs were activated by biologically based dendritic synaptic inputs, enhancing g(GABA-extra) reduced the frequency and coherence of FS-BC firing when E(GABA) was shunting and increased average FS-BC firing when E(GABA) was depolarizing. Shifting E(GABA) from shunting to depolarizing potentials consistently increased network frequency to and above high gamma frequencies (>80 Hz). Since gamma oscillations may contribute to learning and memory processing [Fell et al., Nat. Neurosci. 4, 1259 (2001); Jutras et al., J. Neurosci. 29, 12521 (2009); Wang, Physiol. Rev. 90, 1195 (2010)], our demonstration that network oscillations are modulated by extrasynaptic inhibition in FS-BCs suggests that neuroactive compounds that act on extrasynaptic GABA receptors could impact memory formation by modulating hippocampal gamma oscillations. The simulation results indicate that the depolarized FS-BC GABA reversal, observed after experimental seizures, together with enhanced spillover extrasynaptic GABA currents are likely to promote generation of focal high frequency activity associated with epileptic networks.


Assuntos
Relógios Biológicos , Simulação por Computador , Modelos Neurológicos , Rede Nervosa , Convulsões , Transmissão Sináptica , Ácido gama-Aminobutírico/metabolismo , Ondas Encefálicas , Dendritos/metabolismo , Humanos , Rede Nervosa/metabolismo , Rede Nervosa/fisiopatologia , Convulsões/metabolismo , Convulsões/fisiopatologia
16.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808695

RESUMO

Acquired epilepsies, characterized by abnormal increase in hypersynchronous network activity, can be precipitated by various factors including brain injuries which cause neuronal loss and increases in network excitability. Electrical coupling between neurons, mediated by gap junctions, has been shown to enhance synchronous neuronal activity and promote excitotoxic neurodegeneration. Consequently, neuronal gap junctional coupling has been proposed to contribute to development of epilepsy. Parvalbumin expressing interneurons (PV-INs), noted for their roles in powerful perisomatic inhibition and network oscillations, have gap junctions formed exclusively by connexin 36 subunits which show changes in expression following seizures, and in human and experimental epilepsy. However, only a fraction of the connexin hemichannels form functional connections, leaving open the critical question of whether functional gap junctional coupling between neurons is altered during development of epilepsy. Using a pilocarpine induced status epilepticus (SE) model of acquired temporal lobe epilepsy in rat, this study examined changes in electrical coupling between PV-INs in the hippocampal dentate gyrus one week after SE. Contrary to expectations, SE selectively reduced the probability of electrical coupling between PV-INs without altering coupling coefficient. Both coupling frequency and coupling coefficient between non-parvalbumin interneurons remained unchanged after SE. The early and selective decrease in functional electrical coupling between dentate PV-INs after SE may represent a compensatory mechanism to limit excitotoxic damage of fast-spiking interneurons and network synchrony during epileptogenesis.

17.
Epilepsy Res ; 198: 107257, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37989006

RESUMO

Acquired temporal lobe epilepsy (TLE) characterized by spontaneous recurrent seizures (SRS) and hippocampal inhibitory neuron dysfunction is often refractory to current therapies. Gap junctional or electrical coupling between inhibitory neurons has been proposed to facilitate network synchrony and intercellular molecular exchange suggesting a role in both seizures and neurodegeneration. While gap junction blockers can limit acute seizures, whether blocking neuronal gap junctions can modify development of chronic epilepsy has not been examined. This study examined whether mefloquine, a selective blocker of Connexin 36 gap junctions which are well characterized in inhibitory neurons, can limit epileptogenesis and related cellular and behavioral pathology in a model of acquired TLE. A single, systemic dose of mefloquine administered early after pilocarpine-induced status epilepticus (SE) in rat reduced both development of SRS and behavioral co-morbidities. Immunostaining for interneuron subtypes identified that mefloquine treatment likely reduced delayed inhibitory neuronal loss after SE. Uniquely, parvalbumin expressing neurons in the hippocampal dentate gyrus appeared relatively resistant to early cell loss after SE. Functionally, whole cell patch clamp recordings revealed that mefloquine treatment preserved inhibitory synaptic drive to projection neurons one week and one month after SE. These results demonstrate that mefloquine, a drug already approved for malaria prophylaxis, is potentially antiepileptogenic and can protect against progressive interneuron loss and behavioral co-morbidities of epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Fármacos Neuroprotetores , Estado Epiléptico , Ratos , Animais , Fármacos Neuroprotetores/efeitos adversos , Mefloquina/efeitos adversos , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia , Convulsões/induzido quimicamente , Hipocampo , Epilepsia/patologia , Pilocarpina/toxicidade , Modelos Animais de Doenças
18.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873292

RESUMO

Axo-axonic cells (AACs) provide specialized inhibition to the axon initial segment (AIS) of excitatory neurons and can regulate network output and synchrony. Although hippocampal dentate AACs are structurally altered in epilepsy, physiological analyses of dentate AACs are lacking. We demonstrate that parvalbumin neurons in the dentate molecular layer express PTHLH, an AAC marker, and exhibit morphology characteristic of AACs. Dentate AACs show high-frequency, non-adapting firing but lack persistent firing in the absence of input and have higher rheobase than basket cells suggesting that AACs can respond reliably to network activity. Early after pilocarpine-induced status epilepticus (SE), dentate AACs receive fewer spontaneous excitatory and inhibitory synaptic inputs and have significantly lower maximum firing frequency. Paired recordings and spatially localized optogenetic stimulation revealed that SE reduced the amplitude of unitary synaptic inputs from AACs to granule cells without altering reliability, short-term plasticity, or AIS GABA reversal potential. These changes compromised AAC-dependent shunting of granule cell firing in a multicompartmental model. These early post-SE changes in AAC physiology would limit their ability to receive and respond to input, undermining a critical brake on the dentate throughput during epileptogenesis.

19.
Prog Neurobiol ; 231: 102542, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37898313

RESUMO

Axo-axonic cells (AACs) provide specialized inhibition to the axon initial segment (AIS) of excitatory neurons and can regulate network output and synchrony. Although hippocampal dentate AACs are structurally altered in epilepsy, physiological analyses of dentate AACs are lacking. We demonstrate that parvalbumin neurons in the dentate molecular layer express PTHLH, an AAC marker, and exhibit morphology characteristic of AACs. Dentate AACs show high-frequency, non-adapting firing but lack persistent firing in the absence of input and have higher rheobase than basket cells suggesting that AACs can respond reliably to network activity. Early after pilocarpine-induced status epilepticus (SE), dentate AACs receive fewer spontaneous excitatory and inhibitory synaptic inputs and have significantly lower maximum firing frequency. Paired recordings and spatially localized optogenetic stimulation revealed that SE reduced the amplitude of unitary synaptic inputs from AACs to granule cells without altering reliability, short-term plasticity, or AIS GABA reversal potential. These changes compromised AAC-dependent shunting of granule cell firing in a multicompartmental model. These early post-SE changes in AAC physiology would limit their ability to receive and respond to input, undermining a critical brake on the dentate throughput during epileptogenesis.


Assuntos
Giro Denteado , Estado Epiléptico , Humanos , Reprodutibilidade dos Testes , Neurônios/fisiologia , Axônios , Estado Epiléptico/induzido quimicamente
20.
Exp Neurol ; 370: 114578, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37858696

RESUMO

Traumatic brain injury leads to cellular and circuit changes in the dentate gyrus, a gateway to hippocampal information processing. Intrinsic granule cell firing properties and strong feedback inhibition in the dentate are proposed as critical to its ability to generate unique representation of similar inputs by a process known as pattern separation. Here we evaluate the impact of brain injury on cellular decorrelation of temporally patterned inputs in slices and behavioral discrimination of spatial locations in vivo one week after concussive lateral fluid percussion injury (FPI) in mice. Despite posttraumatic increases in perforant path evoked excitatory drive to granule cells and enhanced ΔFosB labeling, indicating sustained increase in excitability, the reliability of granule cell spiking was not compromised after FPI. Although granule cells continued to effectively decorrelate output spike trains recorded in response to similar temporally patterned input sets after FPI, their ability to decorrelate highly similar input patterns was reduced. In parallel, encoding of similar spatial locations in a novel object location task that involves the dentate inhibitory circuits was impaired one week after FPI. Injury induced changes in pattern separation were accompanied by loss of somatostatin expressing inhibitory neurons in the hilus. Together, these data suggest that the early posttraumatic changes in the dentate circuit undermine dentate circuit decorrelation of temporal input patterns as well as behavioral discrimination of similar spatial locations, both of which could contribute to deficits in episodic memory.


Assuntos
Lesões Encefálicas , Giro Denteado , Camundongos , Animais , Reprodutibilidade dos Testes , Hipocampo , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA