Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(20): 200502, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860047

RESUMO

Generating high-fidelity, tunable entanglement between qubits is crucial for realizing gate-based quantum computation. In superconducting circuits, tunable interactions are often implemented using flux-tunable qubits or coupling elements, adding control complexity and noise sources. Here, we realize a tunable ZZ interaction between two transmon qubits with fixed frequencies and fixed coupling, induced by driving both transmons off resonantly. We show tunable coupling over 1 order of magnitude larger than the static coupling, and change the sign of the interaction, enabling cancellation of the idle coupling. Further, this interaction is amenable to large quantum processors: the drive frequency can be flexibly chosen to avoid spurious transitions, and because both transmons are driven, it is resilient to microwave cross talk. We apply this interaction to implement a controlled phase (CZ) gate with a gate fidelity of 99.43(1)% as measured by cycle benchmarking, and we find the fidelity is limited by incoherent errors.

2.
Nat Commun ; 13(1): 7481, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470858

RESUMO

Ternary quantum information processing in superconducting devices poses a promising alternative to its more popular binary counterpart through larger, more connected computational spaces and proposed advantages in quantum simulation and error correction. Although generally operated as qubits, transmons have readily addressable higher levels, making them natural candidates for operation as quantum three-level systems (qutrits). Recent works in transmon devices have realized high fidelity single qutrit operation. Nonetheless, effectively engineering a high-fidelity two-qutrit entanglement remains a central challenge for realizing qutrit processing in a transmon device. In this work, we apply the differential AC Stark shift to implement a flexible, microwave-activated, and dynamic cross-Kerr entanglement between two fixed-frequency transmon qutrits, expanding on work performed for the ZZ interaction with transmon qubits. We then use this interaction to engineer efficient, high-fidelity qutrit CZ† and CZ gates, with estimated process fidelities of 97.3(1)% and 95.2(3)% respectively, a significant step forward for operating qutrits on a multi-transmon device.

3.
Rev Sci Instrum ; 92(7): 075108, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34340406

RESUMO

As the number of qubits in nascent quantum processing units increases, the connectorized RF (radio frequency) analog circuits used in first generation experiments become exceedingly complex. The physical size, cost, and electrical failure rate all become limiting factors in the extensibility of control systems. We have developed a series of compact RF mixing boards to address this challenge by integrating I/Q quadrature mixing, intermediate frequency/LO (local oscillator)/RF power level adjustments, and direct current bias fine tuning on a 40 × 80 mm2 four-layer printed circuit board with electromagnetic interference shielding. The RF mixing module is designed to work with RF and LO frequencies between 2.5 and 8.5 GHz. The typical image rejection and adjacent channel isolation are measured to be ∼27 dBc and ∼50 dB. By scanning the drive phase in a loopback test, the module short-term amplitude and phase linearity are typically measured to be 5 ×10-4 (Vpp/Vmean) and 1 ×10-3 radian (pk-pk). The operation of the RF mixing board was validated by integrating it into the room temperature control system of a superconducting quantum processor and executing randomized benchmarking characterization of single and two qubit gates. We measured a single-qubit process infidelity of 9.3(3) × 10-4 and a two-qubit process infidelity of 2.7(1) × 10-2.

5.
Phys Rev Lett ; 101(13): 136408, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18851474

RESUMO

During the last few years, investigations of rare-earth materials have made clear that heavy fermion quantum criticality exhibits novel physics not fully understood. In this work, we write for the first time the effective action describing the low energy physics of the system. The f fermions are replaced by a dynamical scalar field whose nonzero expected value corresponds to the heavy fermion phase. The effective theory is amenable to numerical studies as it is bosonic, circumventing the fermion sign problem. Via effective action techniques, renormalization group studies, and Callan-Symanzik resummations, we describe the heavy fermion criticality and predict the heavy fermion critical dynamical susceptibility and critical specific heat. The specific heat coefficient exponent we obtain (0.39) is in excellent agreement with the experimental result at low temperatures (0.4).

6.
Phys Rev Lett ; 97(19): 197201, 2006 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-17155655

RESUMO

It has been proposed that there are degrees of freedom intrinsic to quantum critical points that can contribute to quantum critical physics. We point out that this conclusion is quite general below the upper critical dimension. We show that in (2+1)D antiferromagnets Skyrmion excitations are stable at criticality and identify them as the critical excitations. We find exact solutions composed of Skyrmion and anti-Skyrmion superpositions, which we call topolons. We include the topolons in the partition function and renormalize by integrating out small size topolons and short wavelength spin waves. We obtain a correlation length exponent nu=0.690 666 and anomalous dimension eta=0.0166.

7.
Phys Rev Lett ; 91(14): 147003, 2003 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-14611548

RESUMO

Recently, a new phenomenological Hamiltonian has been proposed to describe the superconducting cuprates. This so-called Gossamer Hamiltonian is an apt model for a superconductor with strong on-site Coulomb repulsion between the electrons. It is shown that at half-filling the Gossamer superconductor with strong repulsion is unstable toward an antiferromagnetic insulator. The superconducting state undergoes a quantum phase transition to an antiferromagnetic insulator as one increases the on-site Coulomb repulsion. Near the transition the Gossamer superconductor becomes spectroscopically indistinguishable from the insulator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA