Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Exp Allergy ; 53(2): 198-209, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36176209

RESUMO

BACKGROUND: Allergen-specific immunotherapy (AIT) is the only clinical approach that can potentially cure some allergic diseases by inducing immunological tolerance. Dermatophagoides pteronyssinus is considered as the most important source of mite allergens worldwide, with high sensitization rates for the major allergens Der p 1, Der p 2 and Der p 23. The aim of this work is to generate a hypoallergenic hybrid molecule containing T-cell epitopes from these three major allergens. METHODS: The hybrid protein termed Der p 2231 containing T-cell epitopes was purified by affinity chromatography. The human IgE reactivity was verified by comparing those with the parental allergens. The hybrid was also characterized immunologically through an in vivo mice model. RESULTS: The hybrid rDer p 2231 stimulated in peripheral blood mononuclear cells (PBMCs) isolated from allergic patients with higher levels of IL- 2, IL-10, IL-15 and IFN-γ, as well as lower levels of IL-4, IL-5, IL-13, TNF-α and GM-CSF. The use of hybrid molecules as a therapeutic model in D. pteronyssinus allergic mice led to the reduction of IgE production and lower eosinophilic peroxidase activity in the airways. We found increased levels of IgG antibodies that blocked the IgE binding to the parental allergens in the serum of allergic patients. Furthermore, the stimulation of splenocytes from mice treated with rDer p 2231 induced higher levels of IL-10 and IFN-γ and decreased the secretion of IL-4 and IL-5, when compared with parental allergens and D. pteronyssinus extract. CONCLUSIONS: rDer p 2231 has the potential to be used in AIT in patients co-sensitized with D. pteronyssinus major allergens, once it was able to reduce IgE production, inducing allergen-specific blocking antibodies, restoring and balancing Th1/Th2 immune responses, and inducing regulatory T-cells.


Assuntos
Antígenos de Dermatophagoides , Epitopos de Linfócito T , Hipersensibilidade , Animais , Humanos , Camundongos , Alérgenos , Antígenos de Dermatophagoides/imunologia , Antígenos de Dermatophagoides/farmacologia , Antígenos de Dermatophagoides/uso terapêutico , Proteínas de Artrópodes , Dermatophagoides pteronyssinus , Epitopos de Linfócito T/química , Epitopos de Linfócito T/uso terapêutico , Hipersensibilidade/tratamento farmacológico , Imunoglobulina E , Interleucina-10 , Interleucina-4 , Interleucina-5 , Leucócitos Mononucleares , Pyroglyphidae , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Imunoterapia/métodos
2.
Clin Exp Allergy ; 53(8): 821-832, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36779555

RESUMO

BACKGROUND: Allergen-specific immunotherapy (AIT) is the only disease-modifying treatment approach to change disease-causing allergens. Hypoallergenic derivatives show promise as potential therapeutics, amongst which BTH2 was designed to induce tolerance against Blomia tropicalis allergy. Our aim was to investigate the hypoallergenicity and immunoregulatory activity of BTH2 in vitro and its therapeutic potential in a mouse model of AIT. METHODS: Recombinant Blo t 5 and Blo t 21 allergens and their hybrid derivatives (BTH1 and BTH2) were expressed and purified. IgE binding capacity was tested by ELISA using sera from Brazilian, Colombian, and Ecuadorian subjects. Secretion of cytokines in supernatants from human cell cultures was measured following stimulation with the four recombinants and controls. The capacity of BTH2 to ameliorate allergic airway inflammation induced by B. tropicalis extract was evaluated in a murine model of AIT. RESULTS: rBlo t 5 and rBlo t 21 were identified as major allergens in Latin American patients, and BTH2 had the lowest IgE binding. In vitro stimulation of human cells induced greater levels of IL-10 and IFN-γ and reduced the secretion of Th2 cytokines. BTH2 ameliorated allergic airway inflammation in B. tropicalis-challenged A/J mice, as evidenced by the histopathological and humoral biomarkers: decreased Th2 cytokines and cellular infiltration (especially eosinophils), lower activity of eosinophil peroxidase, an increase in IgG blocking antibodies and strong reduction of mucus production by goblet cells. CONCLUSIONS: Our study shows that BTH2 represents a promising candidate for the treatment of B. tropicalis allergy with hypoallergenic, immune regulatory and therapeutic properties. Further pre-clinical studies are required in murine models of chronic asthma to further address the efficacy and safety of BTH2 as a vaccine against B. tropicalis-induced allergy.


Assuntos
Hipersensibilidade , Humanos , Camundongos , Animais , Modelos Animais de Doenças , Hipersensibilidade/terapia , Alérgenos , Inflamação , Citocinas , Dessensibilização Imunológica , Imunoglobulina E
3.
Mol Immunol ; 175: 121-131, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39357098

RESUMO

BACKGROUND: The house-dust mite Dermatophagoides pteronyssinus is a key trigger of allergic asthma. Therefore, it is essential to develop new vaccines that can alter inflammatory processes and airway remodeling. The goal of this study was to test the hypoallergenic and immunogenic characteristics of the hypoallergen rDer p 2231 in a murine model of chronic asthma induced by D. pteronyssinus. METHODS: For this, we measured the levels of IgE, IgG1, IgG2a, and cytokines produced by mice receiving the rDer p 2231 protein. Histopathological parameters of the chronic inflammatory response were also investigated by assessing inflammation and airway remodeling. RESULTS: rDer p 2231 given as a therapeutic vaccine, led to a reduction in the production of IgE, eosinophils, and neutrophils, a lower activity of eosinophilic peroxidase in the airways, and an increase in the production of IgG1 and IgG2a antibodies. IgG antibodies blocked IgE binding to parental allergens in sera from atopic patients. Splenocytes, BALF, and lung from mice treated with rDer p 2231 secreted higher levels of Th1 and regulatory cytokines, as well as reduced levels of Th2 cytokines. Histopathological investigation of the lower airways demonstrated reductions in the thickness of the bronchiolar smooth muscle layer, in the subepithelial fibrosis, and in the goblet cells hyperplasia. CONCLUSIONS: Our preclinical studies suggest that rDer p 2231 is a promising candidate for the treatment of D. pteronyssinus allergy, as the hypoallergen has demonstrated the ability to reduce IgE production, induce specific blocking antibodies, restore and balance Th1/Th2 immune responses, and significantly reduce airway remodeling factors. However, additional clinical studies are needed to more accurately assess the efficacy and safety of rDer p 2231 as a vaccine against D. pteronyssinus-induced allergy.

4.
Transbound Emerg Dis ; 69(5): e2994-e3006, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35801561

RESUMO

Toxocariasis is an infection caused by the round worms Toxocara canis and Toxocara cati. It occurs worldwide though it is more prevalent in developing countries. For the diagnosis of toxocariasis, the most used method is the indirect enzyme-linked immunosorbent assay (indirect ELISA), based on the detection of specific antibodies using the excreted/secreted products from T. canis larvae (TES) as antigens, but it cross-reacts with several helminth infections. For this reason, there is a need to investigate species-specific immunoreactive proteins, which can be used for the development of a more sensitive and specific diagnosis. This study aims to investigate immunoreactive protein candidates to be used for the development of a more sensitive and specific diagnosis of Toxocara spp. infection in humans. We have used immunoblotting and mass spectrometry to select four Toxocara canis immunoreactive proteins that were recombinantly expressed in bacteria and evaluated as potential new diagnostic antigens (rMUC3, rTES 26, rTES32 and rCTL4). The recognition of these recombinant proteins by total serum IgG and IgG4 was assayed using the purified proteins in an isolated manner or in combination. The IgG ELISAs performed with individual recombinant antigens reached values of sensitivity and specificity that ranged from 91.7% to 97.3% and 94.0% to 97.9%, respectively. Among the analyses, the IgG4 immunoassay was proven to be more effective, revealing a sensitivity that ranged from 88.8% to 98.3% and a specificity of 97.8%-97.9%. The IgG4 ELISA was shown to be more effective and presented no cross-reactivity when using combinations of the rTES 26 and rCTL4 recombinant proteins. The combination of these two molecules achieved 100% sensitivity and specificity. The use of only two recombinant proteins can contribute to improve the current panorama of toxocariasis immunodiagnosis for, with a better optimization and reduced cost.


Assuntos
Toxocara canis , Toxocaríase , Animais , Antígenos de Helmintos , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/veterinária , Humanos , Immunoblotting/veterinária , Imunoglobulina G , Testes Imunológicos/veterinária , Proteômica , Proteínas Recombinantes , Toxocara , Toxocaríase/diagnóstico
5.
Vaccine ; 38(30): 4762-4772, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32451213

RESUMO

Toxocariasis, a natural helminth infection of dogs and cats caused by Toxocara canis and T. cati, respectively, that are transmitted to mammals, including humans. Infection control is based currently on periodic antihelmintic treatment and there is a need for the development of vaccines to prevent this infection. MATERIALS AND METHODS: Eight potential vaccine candidate T. canis recombinant proteins were identified by in silico (rTcGPRs, rTcCad, rTcVcan, rTcCyst) and larval proteomics (rTES26, rTES32, rMUC-3 and rCTL-4) analyses. Immunogenicity and protection against infectious challenge for seven of these antigens were determined in a murine model of toxocariasis. C57BL/6 female mice were immunized with each of or combinations of recombinant antigens prior to challenge with 500 T. canis embryonated eggs. Levels of specific antibodies (IgG, IgG1, IgG2a and IgE) in sera and cytokines (IL-5, INF-É£ and IL-10) produced by antigens-stimulated splenocytes, were measured. Presence of specific antibodies to the molecules was measured in sera of T. canis-seropositive dogs and humans. RESULTS: All seven molecules were immunogenic in immunized mice; all stimulated significantly elevated levels of specific IgG, IgG1 or IgG2a and six were associated with elevated levels of specific IgE; all induced elevated production of IFN- É£ and IL-10 by splenocytes, but only the in silico-identified membrane-associated recombinants (rTcCad, rTcVcan, and rTcCyst) induced significantly increased IL-5 production. Vaccination with two of the latter (rTcCad and rTcVcan) reduced larval loads in the T. canis challenged mice by 54.3% and 53.9% (P < 0.0001), respectively, compared to unimmunized controls. All seven recombinants were recognized by T. canis-seropositive dog and human sera. CONCLUSION: The identification of vaccine targets by in silico analysis was an effective strategy to identify immunogenic T. canis proteins capable of reducing larval burdens following challenge with the parasite. Two recombinant proteins, rTcCad and rTcVcan, were identified as promising vaccine candidates for canine toxocariasis.


Assuntos
Doenças do Gato , Doenças do Cão , Toxocara canis , Toxocaríase , Animais , Gatos , Modelos Animais de Doenças , Cães , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/genética , Toxocaríase/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA