Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
PLoS One ; 15(10): e0240795, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33095795

RESUMO

Primary ovarian insufficiency (POI) is a heterogeneous disorder associated with several genes. The majority of cases are still unsolved. Our aim was to identify the molecular diagnosis of a Brazilian cohort with POI. Genetic analysis was performed using a customized panel of targeted massively parallel sequencing (TMPS) and the candidate variants were confirmed by Sanger sequencing. Additional copy number variation (CNV) analysis of TMPS samples was performed by CONTRA. Fifty women with POI (29 primary amenorrhea and 21 secondary amenorrhea) of unknown molecular diagnosis were included in this study, which was conducted in a tertiary referral center of clinical endocrinology. A genetic defect was obtained in 70% women with POI using the customized TMPS panel. Twenty-four pathogenic variants and two CNVs were found in 48% of POI women. Of these variants, 16 genes were identified as BMP8B, CPEB1, INSL3, MCM9, GDF9, UBR2, ATM, STAG3, BMP15, BMPR2, DAZL, PRDM1, FSHR, EIF4ENIF1, NOBOX, and GATA4. Moreover, a microdeletion and microduplication in the CPEB1 and SYCE1 genes, respectively, were also identified in two distinct patients. The genetic analysis of eleven patients was classified as variants of uncertain clinical significance whereas this group of patients harbored at least two variants in different genes. Thirteen patients had benign or no rare variants, and therefore the genetic etiology remained unclear. In conclusion, next-generation sequencing (NGS) is a highly effective approach to identify the genetic diagnoses of heterogenous disorders, such as POI. A molecular etiology allowed us to improve the disease knowledge, guide decisions about prevention or treatment, and allow familial counseling avoiding future comorbidities.


Assuntos
Testes Genéticos , Pacientes , Insuficiência Ovariana Primária/genética , Adolescente , Adulto , Animais , Brasil , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Humanos , Padrões de Herança/genética , Adulto Jovem
2.
Biomed Res Int ; 2014: 787465, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25054146

RESUMO

Despite the increasing understanding of female reproduction, the molecular diagnosis of primary ovarian insufficiency (POI) is seldom obtained. The RNA-binding protein NANOS3 poses as an interesting candidate gene for POI since members of the Nanos family have an evolutionarily conserved function in germ cell development and maintenance by repressing apoptosis. We performed mutational analysis of NANOS3 in a cohort of 85 Brazilian women with familial or isolated POI, presenting with primary or secondary amenorrhea, and in ethnically-matched control women. A homozygous p.Glu120Lys mutation in NANOS3 was identified in two sisters with primary amenorrhea. The substituted amino acid is located within the second C2HC motif in the conserved zinc finger domain of NANOS3 and in silico molecular modelling suggests destabilization of protein-RNA interaction. In vitro analyses of apoptosis through flow cytometry and confocal microscopy show that NANOS3 capacity to prevent apoptosis was impaired by this mutation. The identification of an inactivating missense mutation in NANOS3 suggests a mechanism for POI involving increased primordial germ cells (PGCs) apoptosis during embryonic cell migration and highlights the importance of NANOS proteins in human ovarian biology.


Assuntos
Homozigoto , Mutação , Insuficiência Ovariana Primária/genética , Proteínas de Ligação a RNA/genética , Adolescente , Adulto , Amenorreia/genética , Animais , Apoptose , Brasil , Células COS , Estudos de Casos e Controles , Chlorocebus aethiops , Feminino , Citometria de Fluxo , Humanos , Microscopia Confocal , Ligação Proteica , RNA/química , Adulto Jovem , Dedos de Zinco
3.
Cytotechnology ; 54(1): 15-24, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-19003014

RESUMO

Drosophila melanogaster S2 cells were co-transfected with plasmid vectors containing the enhanced green fluorescent protein gene (EGFP), under the control of metallothionein promoter (pMt), and the hygromycin selection gene, in view of establishing parameters for optimized gene expression. A protocol of transfection was worked out, leading after hygromycin selection, to approximately 90% of S2MtEGFP fluorescent cells at day 5 after copper sulfate (CuSO(4)) induction. As analyzed by confocal microscopy, S2MtEGFP cell cultures were shown to be quite heterogeneous regarding the intensity and cell localization of fluorescence among the EGFP expressing cells. Spectrofluorimetry kinetic studies of CuSO(4) induced S2MtEGFP cells showed the EGFP expression at 510 nm as soon as 5 h after induction, the fluorescence increasing progressively from this time to attain values of 4.6 x 10(5) counts/s after 72 h of induction. Induction with 700 muM of CuSO(4) performed at the exponential phase of the S2MtEGFP culture (10(6) cells/mL) led to a better performance in terms of cell growth, percent of fluorescent cells and culture intensity of fluorescence. Sodium butyrate (NaBu) treatment of CuSO(4) induced S2MtEGFP cell cultures, although leading to a loss of cell culture viability, increased the percent of EGFP expressing cells and sharply enhanced the cell culture fluorescence intensity. The present study established parameters for improving heterologous protein expression in stably transfected Drosophila S2 cells, as assessed by the EGFP expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA