RESUMO
Microorganisms have shown their ability to colonize extreme environments including deep subsurface petroleum reservoirs. Physicochemical parameters may vary greatly among petroleum reservoirs worldwide and so do the microbial communities inhabiting these different environments. The present work aimed at the characterization of the microbiota in biodegraded and non-degraded petroleum samples from three Brazilian reservoirs and the comparison of microbial community diversity across oil reservoirs at local and global scales using 16S rRNA clone libraries. The analysis of 620 16S rRNA bacterial and archaeal sequences obtained from Brazilian oil samples revealed 42 bacterial OTUs and 21 archaeal OTUs. The bacterial community from the degraded oil was more diverse than the non-degraded samples. Non-degraded oil samples were overwhelmingly dominated by gammaproteobacterial sequences with a predominance of the genera Marinobacter and Marinobacterium. Comparisons of microbial diversity among oil reservoirs worldwide suggested an apparent correlation of prokaryotic communities with reservoir temperature and depth and no influence of geographic distance among reservoirs. The detailed analysis of the phylogenetic diversity across reservoirs allowed us to define a core microbiome encompassing three bacterial classes (Gammaproteobacteria, Clostridia, and Bacteroidia) and one archaeal class (Methanomicrobia) ubiquitous in petroleum reservoirs and presumably owning the abilities to sustain life in these environments.
Assuntos
Marinobacter/isolamento & purificação , Microbiota , Campos de Petróleo e Gás/microbiologia , Archaea/genética , Archaea/isolamento & purificação , Marinobacter/genética , Petróleo/metabolismo , Filogenia , RNA Ribossômico 16S/genéticaRESUMO
An ambient ionization/desorption technique, namely, easy ambient sonic-spray ionization mass spectrometry (EASI), has been applied to crude oil samples. From a single droplet of the sample placed on an inert surface, EASI(+/-) is shown to promote efficient desorption and ionization of a myriad of polar components via the action of its cloud of very minute supersonic bipolar charged droplets. The gaseous [M + H](+) and [M - H](-) ions concurrently formed by EASI(+/-) were analyzed by Fourier transform mass spectrometry (FT-ICR MS), and a total of approximately 6000 acidic and basic components have been attributed. EASI(+/-) FT-ICR MS of crude oils is show to be almost as fast as ESI(+)/ESI(-) FT-ICR MS, providing similar compositional information of polar components and spectral quality comparable to that of a commercial nonochip-based robotic ESI device. EASI(+/-) requires no sample workup thus eliminating risks of contamination during sample manipulation and memory effects because of carry over in pumping ESI lines. More importantly, EASI(+/-) is a voltage-free ionization technique therefore eliminating risks of redox processes or duality of ionization mechanisms that can be observed in voltage-assisted processes. Data visualization via typical petroleomic plots confirms the similarity of the compositional information provided by EASI(+/-) compared to ESI(+)/ESI(-). The ambient EASI(+/-) FT-ICR MS method requires no voltage switching in changing the ion polarity mode, offering a workup, heating and voltage-free protocol for petroleomic studies performed at open atmosphere directly on the undisturbed crude oil sample.
RESUMO
Microbial oxidation potentials of extremophiles recovered from Pampo Sul oil field, Campos Basin, Brazil, in pure culture or in consortia, were investigated using high-throughput screening (HTS) and multibioreactions. Camphor (1), cis-jasmone (2), 2-methyl-cyclohexanone (3), 1,2-epoxyoctane (4), phenylethyl acetate (5), phenylethyl propionate (6), and phenylethyl octanoate (7) were used to perform multibioreaction assays. Eighty-two bacterial isolates were recovered from oil and formation water samples and those presenting outstanding activities in HTS assays were identified by sequencing their 16S rRNA genes. These results revealed that most microorganisms belonged to the genus Bacillus and presented alcohol dehydrogenase, monooxygenase, epoxide hydrolase, esterase, and lipase activities.
Assuntos
Bactérias/enzimologia , Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Hidrolases/metabolismo , Oxigenases de Função Mista/metabolismo , Petróleo/microbiologia , Microbiologia da Água , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Hidrolases/genética , Oxigenases de Função Mista/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genéticaRESUMO
Microbial biodegradation of hydrocarbons in petroleum reservoirs has major consequences in the petroleum value and quality. The identification of microorganisms capable of in-situ degradation of hydrocarbons under the reservoir conditions is crucial to understand microbial roles in hydrocarbon transformation and the impact of oil exploration and production on energy resources. The aim of this study was to profile the metagenome of microbial communities in crude oils and associated formation water from two high temperature and relatively saline oil-production wells, where one has been subjected to water flooding (BA-2) and the other one is considered pristine (BA-1). The microbiome was studied in the fluids using shotgun metagenome sequencing. Distinct microbial compositions were revealed when comparing pristine and water flooded oil wells in contrast to the similar community structures observed between the aqueous and oil fluids from the same well (BA-2). The equal proportion of archaea and bacteria together with the greater anaerobic hydrocarbon degradation potential in the BA-1 pristine but degraded reservoir contrasted with the predominance of bacteria over archaea, aerobic pathways and lower frequency of anaerobic degradation genes in the BA-2 water flooded undegraded well. Our results suggest that Syntrophus, Syntrophomonas, candidatus Atribacteria and Synergistia, in association with mainly acetoclastic methanogenic archaea of the genus Methanothrix, were collectively responsible for the oil biodegradation observed in the pristine petroleum well BA-1. Conversely, the microbial composition of the water flooded oil well BA-2 was mainly dominated by the fast-growing and putatively aerobic opportunists Marinobacter and Marinobacterium. This presumable allochthonous community introduced a greater metabolic versatility, although oil biodegradation has not been detected hitherto perhaps due to in-reservoir unfavorable physicochemical conditions. These findings provide a better understanding of the petroleum reservoir microbiomes and their potential roles in biogeochemical processes occurring in environments with different geological and oil recovery histories.
Assuntos
Archaea , Petróleo , Bactérias , Biodegradação Ambiental , Hidrocarbonetos , Metagenoma , Campos de Petróleo e Gás , FilogeniaRESUMO
Microbial degradation of petroleum is a worldwide issue, which causes physico-chemical changes in its compounds, diminishing its commercial value. Biosurfactants are chemically diverse molecules that can be produced by several microorganisms and can enable microbial access to hydrocarbons. In order to investigate both microbial activities, function-driven screening assays for biosurfactant production and hydrocarbon biodegradation were carried out from a metagenomic fosmid library. It was constructed from the total DNA extracted from aerobic and anaerobic enrichments from a Brazilian biodegraded petroleum sample. A sum of 10 clones were selected in order to evaluate their ability to produce exopolymers (EPS) with emulsifying activity, as well as to characterize the gene sequences, harbored by the fosmid clones, through 454 pyrosequencing. Functional analyses confirmed the ability of some clones to produce surfactant compounds. Regarding hydrocarbon as microbial carbon sources, n-alkane (in mixture or not) and naphthalene were preferentially consumed as substrates. Analysis of sequence data set revealed the presence of genes related to xenobiotics biodegradation and carbohydrate metabolism. These data were corroborated by the results of hydrocarbon biodegradation and biosurfactant production detected in the evaluated clones.
Assuntos
Hidrocarbonetos/metabolismo , Metagenoma , Petróleo/metabolismo , Biodegradação Ambiental , Brasil , Biblioteca GênicaRESUMO
The upper parts of oil field structures may leak gas which is supposed to be indirectly detected by the soil bacterial populations. Such microorganisms are capable of consuming this gas, supporting the Microbial Prospection of Oil and Gas (MPOG) methodology. The goal of the present work was to characterize microbial communities involved in short-chain alkane metabolism, namely methane, ethane and propane, in samples from a petroliferous (P) soil through clone libraries of the 16S rRNA gene of the Domains Bacteria and Archaea and the catabolic gene coding for the soluble di-iron monooxygenase (SDIMO) enzyme alpha subunit. The microbial community presented high abundance of the bacterial phylum Actinobacteria, which represented 53% of total clones, and the Crenarchaeota group I.1b from the Archaea Domain. The analysis of the catabolic genes revealed the occurrence of seven Operational Protein Families (OPF) and higher richness (Chao = 7; Ace = 7.5) and diversity (Shannon = 1.09) in P soil when compared with a non-petroliferous (Np) soil (Chao = 2; Ace = 0, Shannon = 0.44). Clones related to the ethene monooxygenase (EtnC) and methane monooxygenase (MmoX) coding genes occurred only in P soil, which also presented higher levels of methane and lower levels of ethane and propane, revealed by short-chain hydrocarbon measures. Real-time PCR results suggested that the SDIMO genes occur in very low abundance in the soil samples under study. Further investigations on SDIMOs genes in natural environments are necessary to unravel their still uncharted diversity and to provide reliable tools for the prospection of degrading populations.
RESUMO
Several studies suggest that petroleum biodegradation can be achieved by either aerobic or anaerobic microorganisms, depending on oxygen input or other electron acceptors and appropriate nutrients. Evidence from in vitro experiments with samples of petroleum formation water and oils from Pampo Field indicate that petroleum biodegradation is more likely to be a joint achievement of both aerobic and anaerobic bacterial consortium, refining our previous observations of aerobic degradation. The aerobic consortium depleted, in decreasing order, hydrocarbons > hopanes > steranes > tricyclic terpanes while the anaerobic consortium depleted hydrocarbons > steranes > hopanes > tricyclic terpanes. The oxygen content of the mixed consortia was measured from time to time revealing alternating periods of microaerobicity (O2 ~0.8 mg.L-1) and of aerobicity (O2~6.0 mg.L-1). In this experiment, the petroleum biodegradation changed from time to time, alternating periods of biodegradation similar to the aerobic process and periods of biodegradation similar to the anaerobic process. The consortia showed preferences for metabolizing hydrocarbons > hopanes > steranes > tricyclic terpanes during a 90-day period, after which this trend changed and steranes were more biodegraded than hopanes. The analysis of aerobic oil degrading microbiota by the 16S rRNA gene clone library detected the presence of Bacillus, Brevibacterium, Mesorhizobium and Achromobacter, and the analysis of the anaerobic oil degrading microbiota using the same technique detected the presence of Bacillus and Acinetobacter (facultative strains). In the mixed consortia Stenotrophomonas, Brevibacterium, Bacillus, Rhizobium, Achromobacter and 5% uncultured bacteria were detected. This is certainly a new contribution to the study of reservoir biodegradation processes, combining two of the more important accepted hypotheses.