Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 629(8013): 945-950, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720069

RESUMO

Lipoprotein(a) (Lp(a)), an independent, causal cardiovascular risk factor, is a lipoprotein particle that is formed by the interaction of a low-density lipoprotein (LDL) particle and apolipoprotein(a) (apo(a))1,2. Apo(a) first binds to lysine residues of apolipoprotein B-100 (apoB-100) on LDL through the Kringle IV (KIV) 7 and 8 domains, before a disulfide bond forms between apo(a) and apoB-100 to create Lp(a) (refs. 3-7). Here we show that the first step of Lp(a) formation can be inhibited through small-molecule interactions with apo(a) KIV7-8. We identify compounds that bind to apo(a) KIV7-8, and, through chemical optimization and further application of multivalency, we create compounds with subnanomolar potency that inhibit the formation of Lp(a). Oral doses of prototype compounds and a potent, multivalent disruptor, LY3473329 (muvalaplin), reduced the levels of Lp(a) in transgenic mice and in cynomolgus monkeys. Although multivalent molecules bind to the Kringle domains of rat plasminogen and reduce plasmin activity, species-selective differences in plasminogen sequences suggest that inhibitor molecules will reduce the levels of Lp(a), but not those of plasminogen, in humans. These data support the clinical development of LY3473329-which is already in phase 2 studies-as a potent and specific orally administered agent for reducing the levels of Lp(a).


Assuntos
Descoberta de Drogas , Lipoproteína(a) , Macaca fascicularis , Animais , Feminino , Humanos , Masculino , Camundongos , Administração Oral , Kringles , Lipoproteína(a)/antagonistas & inibidores , Lipoproteína(a)/sangue , Lipoproteína(a)/química , Lipoproteína(a)/metabolismo , Camundongos Transgênicos , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Plasminogênio/química , Plasminogênio/metabolismo , Especificidade da Espécie , Ensaios Clínicos Fase II como Assunto , Apolipoproteínas A/química , Apolipoproteínas A/metabolismo
2.
Am J Phys Med Rehabil ; 103(1): 79-86, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36897812

RESUMO

OBJECTIVES: The aim of the study were to (1) investigate what physical and physiological parameters are most important for Frame Running capacity, a parasport for individuals with ambulatory difficulties, and (2) determine whether Frame Running capacity can be predicted in athletes with cerebral palsy. DESIGN: Athletes with cerebral palsy ( N = 62, Gross Motor Classification System I-V; 2/26/11/21/2) completed a 6-min Frame Running test. Before the 6-min Frame Running test, muscle thickness, passive range of motion (hip, knee, ankle), selective motor control, and spasticity (hip, knee, ankle) were measured in both legs. In total, 54 variables per individual were included. Data were analyzed using correlations, principal component analysis, orthogonal partial least square regression, and variable importance in projection analysis. RESULTS: The mean 6-min Frame Running test distance was 789 ± 335 m and decreased with motor function severity. The orthogonal partial least square analysis revealed a modest degree of covariance in the variables analyzed and that the variance in the 6-min Frame Running test distance could be predicted with 75% accuracy based on all the variables measured. Variable importance in projection analysis indicated hip and knee extensor spasticity (negative effect), and muscle thickness (positive effect) arose as the most important factors contributing to Frame Running capacity. CONCLUSIONS: These results are an important resource to enable optimization of training regimes to improve Frame Running capacity and contribute to evidence-based and fair classification for this parasport.


Assuntos
Paralisia Cerebral , Corrida , Humanos , Joelho , Extremidade Inferior , Corrida/fisiologia , Espasticidade Muscular , Atletas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA