Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
ACS Omega ; 7(31): 27116-27125, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35967049

RESUMO

Corrosion of metal/steel is a major concern in terms of safety, durability, cost, and environment. We have studied a cost-effective, nontoxic, and environmentally friendly pyromellitic diimide (PMDI) compound as a corrosion inhibitor for galvanized steel through density functional theory. An atomic-scale engineering through the functionalization of PMDI is performed to showcase the enhancement in corrosion inhibition and strengthen the interaction between functionalized PMDI (F-PMDI) and zinc oxide (naturally existing on galvanized steel). PMDI is functionalized with methyl/diamine groups (inh1 (R = -CH3, R' = -CH3), inh2 (R = -CH3, R' = -CH2CH2NH2), and inh3 (R = -C6H3(NH2)2, R' = -CH2CH2NH2). The corrosion inhibition parameters (e.g., orbital energies, electronegativity, dipole moment, global hardness, and electron transfer) indicate the superior corrosion inhibition performance of inh3 (inh3 > inh2 > inh1). Inh3 (∼182.38 kJ/mol) strongly interacts with ZnO(101̅0) compared to inh2 (∼122.56 kJ/mol) and inh1 (∼119.66 kJ/mol). The superior performance of inh3 has been probed through charge density and density of states. Larger available states of N and H (of inh3) interact strongly with Zn and Osurf (of the surface), respectively, creating N-Zn and H-Osurf bonds. Interestingly, these bonds only appear in inh3. The charge accumulation on Osurf, and depletion on H(s), further strengthens the bonding between inh3 and ZnO(101̅0). The microscopic understanding obtained in this study will be useful to develop low-cost and efficient corrosion inhibitors for galvanized steel.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 215: 313-326, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30851689

RESUMO

CQDs have emerged with outstanding properties as a star member of carbon nanomaterial family and in order to reveal its wide-range of application in biological microenvironment the interactions between human hemoglobin (HHb) and CQD and also with ethylenediamine-functionalized CQD (NCQD) are assessed using several techniques. Firstly, UV-vis absorption spectra of HHb reveal hyperchromic effect in the region of absorbance of tryptophan and tyrosine residues and also hypochromicity of Soret band in presence of CQD and NCQD. Interestingly, steady-state fluorescence spectroscopy reveal distinct fluorescence enhancement of HHb with significant red shift thereby indicating exposures of tryptophan and tyrosine residues to a more hydrophilic environment. However synchronous fluorescence spectra reveal that the microenvironment of tryptophan and tyrosine residues is altered in opposite manner, i.e. exposure of tryptophan residues to a more hydrophilic environment and the tyrosine residues to a more hydrophobic environment. Moreover the fluorescence enhancement is observed to be accompanied by increase in average fluorescence-lifetime and decrease in steady-state anisotropy thus signifying a decrease in restriction of rotational motion. Furthermore tryptophan residues within HHb appear to interact more with CQD compared to NCQD. Thermodynamic parameters as revealed by Isothermal Titration Calorimetry (ITC) demonstrate that electrostatic, hydrogen bonding and hydrophobic interactions are the predominant modes of interactions in presence of CQD. Whereas hydrophobic and hydrogen bonding interactions are the major interacting forces in presence of NCQD with five-site sequential binding as best-fit model in both the cases. Such interactions also appear to be associated with an increase in aggregation of HHb as evident from the measurements by atomic force microscopy (AFM) and dynamic light scattering (DLS) study. Although FT-IR spectra display alteration of amide I band, but the overall secondary structure of HHb seems to be nearly retained even in presence of CQDs, as evident in the CD spectra. These observations thus highlight the potential biomedical application of CQDs in biological microenvironment of human especially as drug-delivery system. Also bimolecular interaction of HHb as a model protein with other nanoparticles at the nano bio-interface has been outlined.


Assuntos
Hemoglobinas/análise , Hemoglobinas/química , Pontos Quânticos/química , Espectrometria de Fluorescência/métodos , Carbono/química , Humanos , Modelos Moleculares , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA