Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Small ; 17(19): e2100101, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33792184

RESUMO

The doping of halide perovskite nanocrystals (NCs) with manganese cations (Mn2+ ) has recently enabled enhanced stability, novel optical properties, and modulated charge carrier dynamics of the NCs host. However, the influence of Mn doping on the synthetic routes and the band structures of the host has not yet been elucidated. Herein, it is demonstrated that Mn doping promotes a facile, safe, and low-hazard path toward the synthesis of ternary Cs3 Bi2 I9 NCs by effectively inhibiting the impurity phase (i.e., CsI) resulting from the decomposition of the intermediate Cs3 BiI6 product. Furthermore, it is observed that the deepening of the valence band level of the host NCs upon doping at Mn concentration levels varying from 0 to 18.5% (atomic ratio) with respect to the Bi content. As a result, the corresponding Mn-doped NCs solar cells show a higher open-circuit voltage and longer electron lifetime than those employing the undoped perovskite NCs. This work opens new insights on the role of Mn doping in the synthetic route and optoelectronic properties of lead-free halide perovskite NCs for still unexplored applications.

2.
Chemphyschem ; 18(1): 64-71, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27805802

RESUMO

The preparation of weblike titanium dioxide thin films by atomic layer deposition on cellulose biotemplates is reported. The method produces a TiO2 web, which is flexible and transferable from the deposition substrate to that of the end application. Removal of the cellulose template by calcination converts the amorphous titania to crystalline anatase and gives the structure a hollow morphology. The TiO2 webs are thoroughly characterized using electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy to give new insight into manufacturing of porous titanium dioxide structures by means of template-based methods. Functionality and integrity of the TiO2 hollow weblike thin films were successfully confirmed by applying them as electrodes in dye-sensitized solar cells.

3.
Environ Pollut ; 308: 119669, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35750308

RESUMO

The analysis of microplastics in complex environmental samples requires the use of chemicals to reduce the organic matrix. This procedure should be evaluated in terms of the preservation of the microplastic's integrity, typically done with pristine reference microplastics. However, real microplastics are most likely degraded due to weathering, so pristine reference microplastics might not depict the appropriateness of the process. This study performed a purification process using sodium dodecyl sulfate and hydrogen peroxide on sewage sludge containing LLDPE, HDPE, PP, PS, PET, PA66 and SBR samples exposed to simulated environmental weathering. The degradation of the polymers was assessed by analyzing surface morphology, mass variation, and mechanical, thermal and chemical properties. Comparison with pristine polymers revealed that the purification process can lead to more detrimental effects if the polymers are weathered. After the purification process, some important observations were: 1) LLDPE, PP and SBR surfaces had cracks in the weathered samples that were not observed in the pristine samples, 2) weathered LLDPE, PP and PA66 experienced greater mass loss than pristine, 3) the fragmentation propensity of weathered LLDPE, HDPE, PP, PS and SBR increased compared to pristine samples and 4) the main characteristic peaks in FTIR spectrum could be identified and used for chemical identification of most polymers for pristine and weathered samples. Based on the findings of this study, when analyzing the efficiency and adequacy of a purification process with methods based on surface morphology, mass variation and particle counting indicators, it is recommended to consider the differences that potentially arise between pristine and weathered microplastics, especially for polyolefins (PEs and PP).


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/análise , Polietileno , Polímeros , Esgotos , Poluentes Químicos da Água/análise , Tempo (Meteorologia)
4.
Polymers (Basel) ; 14(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35054709

RESUMO

Icephobic coatings interest various industries facing icing problems. However, their durability represents a current limitation in real applications. Therefore, understanding the degradation of coatings under various environmental stresses is necessary for further coating development. Here, lubricated icephobic coatings were fabricated using a flame spray method with hybrid feedstock injection. Low-density polyethylene represented the main coating component. Two additives, namely fully hydrogenated cottonseed oil and paraffinic wax, were added to the coating structure to enhance coating icephobicity. Coating properties were characterised, including topography, surface roughness, thermal properties, wettability, and icephobicity. Moreover, their performance was investigated under various environmental stresses, such as repeated icing/deicing cycles, immersion in corrosive media, and exposure to ultraviolet (UV) irradiation. According to the results, all coatings exhibited medium-low ice adhesion, with slightly more stable icephobic behaviour for cottonseed oil-based coatings over the icing/deicing cycles. Surface roughness slightly increased, and wetting performances decreased after the cyclic tests, but chemical changes were not revealed. Moreover, coatings demonstrated good chemical resistance in selected corrosive media, with better performance for paraffin-based coatings. However, a slight decrease in hydrophobicity was detected due to surface structural changes. Finally, paraffin-based coatings showed better resistance under UV irradiation based on carbonyl index and colour change measurements.

5.
Sci Total Environ ; 830: 154777, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35339546

RESUMO

The extraction of microplastics from complex environmental matrices, such as sewage sludge, has proven challenging because of their high organic content. A common procedure for the extraction of microplastics from sludge involves conducting a chemical digestion to reduce the amount of organic matter in the sample, followed by a density separation of microplastics. In order to increase the reliability of the density-based separation, an optimisation of the chemical digestion is needed. The aim of this study was to maximise the total solids and carbon content reduction of sludge by optimising the sodium dodecyl sulphate (SDS) pretreatment and the duration of H2O2 digestion. A reduction in total solids by 95.6% and in carbon content by 98.1% were achieved with the optimised digestion method, which involved an application of 1% SDS and a 2-day H2O2 treatment in the first digestion step. The inclusion of the SDS pretreatment significantly increased the reduction of total solids and carbon content. The optimised digestion process had no significant visible effects on tested reference microplastics and provided an extraction efficiency of 84% for 150 µm reference microspheres and 72% for 650 µm long microfibres. To enable the application of the optimised digestion process to other types of sludges, the consumption of SDS and H2O2 were also presented as per grams of organic matter in the untreated sludge.


Assuntos
Microplásticos , Esgotos , Anaerobiose , Carbono , Peróxido de Hidrogênio , Plásticos , Reprodutibilidade dos Testes , Esgotos/química , Eliminação de Resíduos Líquidos/métodos
6.
Polymers (Basel) ; 14(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35335429

RESUMO

Currently, the vast majority of composite waste is either landfilled or incinerated, causing a massive burden on the environment and resulting in the loss of potentially valuable raw material. Here, conventional pyrolysis and reactive pyrolysis were used to reclaim carbon fibers from aeronautical scrap material, and to evaluate the feasibility of using reclaimed carbon fibers in structural components for the automotive sector. The need for fiber sizing was investigated as well as the behavior of the fiber material in macroscopic impact testing. The fibers were characterized with the single fiber tensile test, scanning electron microscopy, and the microbond test. Critical fiber length was estimated in both polypropylene and polyamide matrices. Tensile strength of the fiber material was better preserved with the reactive pyrolysis compared to the conventional pyrolysis, but in both cases the interfacial shear strength was retained or even improved. The impact testing revealed that the components made of these fibers fulfilled all required deformation limits set for the components with virgin fibers. These results indicate that recycled carbon fibers can be a viable option even in structural components, resulting in lower production costs and greener composites.

7.
Sci Rep ; 12(1): 20520, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443480

RESUMO

Bacterial nanocellulose (BC) is a highly versatile biopolymer currently pursued as a material of choice in varied themes of biomedical and material science research fields. With the aim to extend the biotechnological applications, the genetic tractability of the BC producers within the Komagataeibacter genus and its potential as an alternative host chassis in synthetic biology have been extensively studied. However, such studies have been largely focused on the model Komagataeibacter spp. Here, we present a novel K. intermedius strain capable of utilizing glucose, and glycerol sources for biomass and BC synthesis. Genome assembly identified one bacterial cellulose synthetase (bcs) operon containing the complete gene set encoding the BC biogenesis machinery (bcsI) and three additional copies (bcsII-IV). Investigations on the genetic tractability confirmed plasmid transformation, propagation of vectors with pBBR1 and p15A origin of replications and constitutive and inducible induction of recombinant protein in K. intermedius ENS15. This study provides the first report on the genetic tractability of K. intermedius, serving as starting point towards future genetic engineering of this strain.


Assuntos
Acetobacteraceae , Acetobacteraceae/genética , Engenharia Genética , Biologia Sintética , Biomassa
8.
ACS Omega ; 6(44): 29424-29431, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34778615

RESUMO

Most of the properties of epoxy resins are tied to their degree of cross-linking, making understanding the reactivity of different epoxy systems a crucial aspect of their utilization. Here, epoxy-amine reactivity is studied with density functional theory (DFT) at various cut-off levels to explore the suitability of the method for estimating the reactivity of specific epoxy systems. Although it is common to use minimal structures in DFT to reduce computational cost, the results of this study highlight the important role of hydrogen bonding and other noncovalent interactions in the reactivity. This is a promising result for differentiating the most probable reactive paths for different resin systems. The significance of amine groups as a potential source of catalyzing H-bonds was also explored and, while not quite as effective as a catalyst as a hydroxyl group, a clear catalyzing effect was observed in the transition state energies. Unfortunately, the added complexity of a more representative reactive system also results in increased computational cost, highlighting the need for proper selection of structural cutoffs.

9.
Environ Pollut ; 269: 116235, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33316502

RESUMO

To enable and/or facilitate analysis of microplastics from environmental samples, a purification process is required to reduce the organic matter content. The development of such process has as one main concern, besides achieving efficient organic matter reduction, the preservation of the microplastics. In this study, a three-step method for sewage sludge purification was proposed employing sodium dodecyl sulfate and hydrogen peroxide. The effects of the purification method on seven polymers (LLDPE, HDPE, PP, PS, PET, PA66 and SBR) were evaluated in terms of mass change, surface characteristics, mechanical properties, thermal properties and functional groups change. It was also assessed how the polymers were affected by the purification chemicals without the presence of sewage sludge. The purification process led to changes in all tested plastics, but in different intensities. LLDPE, HDPE, PP, PS and PET did not suffer considerable degradation. PET was more affected by hydrolysis than oxidation. On the other hand, the integrities of PA66 and SBR were noticeably affected. The effects of the purification process were considered to be due to the plasticizer behavior of water and oxidation on PA66 and loss of filler and oxidation on SBR. For both polymers there was a reduction on the tensile strength of around 50-60% after the purification, indicating they could be prone to fragmentate into smaller pieces along the process. After purification, PA66 also started to decompose at a temperature around 10 °C lower comparing to virgin samples. Except for SBR, the presence of sewage sludge and its oxidation was more harmful to the polymers than the purification chemicals without the presence of sewage sludge. This study serves as an evaluation of the effects of the purification process on the degradation of microplastics and a methodology for such assessment when designing a purification process.


Assuntos
Esgotos , Purificação da Água , Hidrólise , Microplásticos , Plásticos , Polímeros
10.
Polymers (Basel) ; 13(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34578015

RESUMO

Aramid fibers are high-strength and high-modulus technical fibers used in protective clothing, such as bulletproof vests and helmets, as well as in industrial applications, such as tires and brake pads. However, their full potential is not currently utilized due to adhesion problems to matrix materials. In this paper, we study how the introduction of mechanical adhesion between aramid fibers and matrix material the affects adhesion properties of the fiber in both thermoplastic and thermoset matrix. A microwave-induced surface modification method is used to create nanostructures to the fiber surface and a high throughput microbond method is used to determine changes in interfacial shear strength with an epoxy (EP) and a polypropylene (PP) matrix. Additionally, Fourier transform infrared spectroscopy, atomic force microscopy, and scanning electron microscopy were used to evaluate the surface morphology of the fibers and differences in failure mechanism at the fiber-matrix interface. We were able to increase interfacial shear strength (IFSS) by 82 and 358%, in EP and PP matrix, respectively, due to increased surface roughness and mechanical adhesion. Also, aging studies were conducted to confirm that no changes in the adhesion properties would occur over time.

11.
Microorganisms ; 9(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34835356

RESUMO

Komagataeibacter spp. has been used for the bioconversion of industrial wastes and lignocellulosic hydrolysates to bacterial cellulose (BC). Recently, studies have demonstrated the capacity of Komagataeibacter spp. in the biotransformation of inhibitors found in lignocellulosic hydrolysates, aromatic lignin-derived monomers (LDMs) and acetate. In general, detoxification and BC synthesis from lignocellulosic inhibitors requires a carbon flow from acetyl-coA towards tricarboxylic acid and gluconeogenesis, respectively. However, the related molecular aspects have not yet been identified in Komagataeibacter spp. In this study, we isolated a cellulose-producing bacterium capable of synthesizing BC in a minimal medium containing crude glycerol, a by-product from the biodiesel production process. The isolate, affiliated to Komagataeibacter genus, synthesized cellulose in a minimal medium containing glucose (3.3 ± 0.3 g/L), pure glycerol (2.2 ± 0.1 g/L) and crude glycerol (2.1 ± 0.1 g/L). Genome assembly and annotation identified four copies of bacterial cellulose synthase operon and genes for redirecting the carbon from the central metabolic pathway to gluconeogenesis. According to the genome annotations, a BC production route from acetyl-CoA, a central metabolic intermediate, was hypothesized and was validated using acetate. We identified that when K. rhaeticus ENS9b was grown in a minimal medium supplemented with acetate, BC production was not observed. However, in the presence of readily utilizable substrates, such as spent yeast hydrolysate, acetate supplementation improved BC synthesis.

12.
Polymers (Basel) ; 13(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673468

RESUMO

Despite the growing global interest in 3D printed carbon fiber reinforced polymers, most of the applications are still limited to high-performance sectors due to the low effectiveness-cost ratio of virgin carbon fibers. However, the use of recycled carbon fibers in 3D printing is almost unexplored, especially for thermoset-based composites. This paper aims to demonstrate the feasibility of recycled carbon fibers 3D printing via UV-assisted direct ink writing. Pyrolyzed recycled carbon fibers with a sizing treatment were firstly shredded to be used as a reinforcement of a thermally and photo-curable acrylic resin. UV-differential scanning calorimetry analyses were then performed to define the material crosslinking of the 3D printable ink. Because of the poor UV reactivity of the resin loaded with carbon fibers, a rheology modifier was added to guarantee shape retention after 3D printing. Thanks to a customized 3D printer based on a commercial apparatus, a batch of specimens was successfully 3D printed. According to the tensile tests and Scanning Electron Microscopy analysis, the material shows good mechanical properties and the absence of layer marks related to the 3D printing. These results will, therefore, pave the way for the use of 3D printed recycled carbon fiber reinforced polymers in new fields of application.

13.
Materials (Basel) ; 13(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348846

RESUMO

Most recycling methods remove the essential sizing from reinforcing fibres, and many studies indicate the importance of applying sizing on recycled fibres, a process we will denote here as resizing. Recycled fibres are not continuous, which dissociates their sizing and composite lay-up processes from virgin fibres. In this study, commercial polypropylene and polyurethane-based sizing formulations with an aminosilane coupling agent were used to resize recycled glass and carbon fibres. The impact of sizing concentration and batch process variables on the tensile properties of fibre-reinforced polypropylene and polyamide composites were investigated. Resized fibres were characterized with thermal analysis, infrared spectroscopy and electron microscopy, and the tensile properties of the composites were analysed to confirm the achievable level of performance. For glass fibres, an optimal mass fraction of sizing on the fibres was found, as an excess amount of film former has a plasticising effect. For recycled carbon fibres, the sizing had little effect on the mechanical properties but led to significant improvement of handling and post-processing properties. A comparison between experimental results and theoretical prediction using the Halpin-Tsai model showed up to 81% reinforcing efficiency for glass fibres and up to 74% for carbon fibres.

14.
Polymers (Basel) ; 12(2)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085523

RESUMO

The focus of this paper is the realization and verification of a modified fiber bundle pull-out test setup to estimate the adhesion properties between threads and elastic matrix materials with a more realistic failure mode than single fiber debond techniques. This testing device including a modified specimen holder provides the basis for an adequate estimation of the interlaminar adhesion of fiber bundles including the opportunity of a faster, easier, and more economic handling compared to single fiber tests. The verification was done with the single-fiber and microbond test. Overall, the modified test setup showed the typical pull-out behavior, and the relative comparability between different test scales is given.

15.
Environ Toxicol Pharmacol ; 74: 103303, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31794919

RESUMO

Exposure to metal oxide nanomaterials potentially occurs at the workplace. We investigated the toxicity of two Fe-oxides: Fe2O3 nanoparticles and nanorods; and three MFe2O4 spinels: NiZnFe4O8, ZnFe2O4, and NiFe2O4 nanoparticles. Mice were dosed 14, 43 or 128 µg by intratracheal instillation. Recovery periods were 1, 3, or 28 days. Inflammation - neutrophil influx into bronchoalveolar lavage (BAL) fluid - occurred for Fe2O3 rods (1 day), ZnFe2O4 (1, 3 days), NiFe2O4 (1, 3, 28 days), Fe2O3 (28 days) and NiZnFe4O8 (28 days). Conversion of mass-dose into specific surface-area-dose showed that inflammation correlated with deposited surface area and consequently, all these nanomaterials belong to the so-called low-solubility, low-toxicity class. Increased levels of DNA strand breaks were observed for both Fe2O3 particles and rods, in BAL cells three days post-exposure. To our knowledge, this is, besides magnetite (Fe3O4), the first study of the pulmonary toxicity of MFe2O4 spinel nanomaterials.


Assuntos
Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Animais , Líquido da Lavagem Broncoalveolar , Dano ao DNA , Camundongos
16.
Polymers (Basel) ; 11(7)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261923

RESUMO

Detonation nanodiamonds, also known as ultradispersed diamonds, possess versatile chemically active surfaces, which can be adjusted to improve their interaction with elastomers. Such improvements can result in decreased dielectric and viscous losses of the composites without compromising other in-rubber properties, thus making the composites suitable for new demanding applications, such as energy harvesting. However, in most cases, surface modification of nanodiamonds requires the use of strong chemicals and high temperatures. The present study offers a less time-consuming functionalization method at 40 °C via reaction between the epoxy-rings of the modifier and carboxylic groups at the nanodiamond surface. This allows decorating the nanodiamond surface with chemical groups that are able to participate in the crosslinking reaction, thus creating strong interaction between filler and elastomer. Addition of 0.1 phr (parts per hundred rubber) of modified nanodiamonds into the silicone matrix results in about fivefold decreased electric losses at 1 Hz due to a reduced conductivity. Moreover, the mechanical hysteresis loss is reduced more than 50% and dynamic loss tangent at ambient temperature is lowered. Therefore, such materials are recommended for the dielectric energy harvesting application, and they are expected to increase its efficiency.

17.
Chem Mater ; 30(4): 1199-1208, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30270988

RESUMO

Amorphous titanium dioxide (a-TiO2) combined with an electrocatalyst has shown to be a promising coating for stabilizing traditional semiconductor materials used in artificial photosynthesis for efficient photoelectrochemical solar-to-fuel energy conversion. In this study we report a detailed analysis of two methods of modifying an undoped thin film of atomic layer deposited (ALD) a-TiO2 without an electrocatalyst to affect its performance in water splitting reaction as a protective photoelectrode coating. The methods are high-temperature annealing in ultrahigh vacuum and atomic hydrogen exposure. A key feature in both methods is that they preserve the amorphous structure of the film. Special attention is paid to the changes in the molecular and electronic structure of a-TiO2 induced by these treatments. On the basis of the photoelectrochemical results, the a-TiO2 is susceptible to photocorrosion but significant improvement in stability is achieved after heat treatment in vacuum at temperatures above 500 °C. On the other hand, the hydrogen treatment does not increase the stability despite the ostensibly similar reduction of a-TiO2. The surface analysis allows us to interpret the improved stability to the thermally induced formation of O- species within a-TiO2 that are essentially electronic defects in the anionic framework.

18.
Carbohydr Polym ; 202: 418-424, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30287018

RESUMO

Nanocellulose and chitosan have recently started to get attention as environmentally friendly piezoelectric materials for sensor and energy harvesting applications. Conversely, current commercially available flexible piezoelectric films made of for example polyvinylidene difluoride (PVDF) are relatively expensive and made from non-renewable materials. We measured the piezoelectric responses (2-8 pC/N) for solvent casted films based on nanocellulose, microcrystalline chitosan and their blends. In addition, the tensile properties of the piezoelectric films were characterized to find out if chitosan could be used to enhance the flexibility of the brittle nanocellulose films. Based on the results, plain chitosan is an interesting piezoelectric material itself. In addition, blending nanocellulose and chitosan could be a potential method for tailoring the properties of solvent casted low cost, green piezoelectric films.

19.
Heliyon ; 4(9): e00787, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30225381

RESUMO

In this paper, we propose and verify a theoretical model of the development of dispersion quality of aqueous carbon nanotube (CNT) colloid as a function of sonochemical yield of the sonication process. Four different surfactants; Triton X-100, Pluronic F-127, CTAB and SDS were studied. From these four SDS had the lowest dispersion performance which was surprising. Optical dispersion quality results fits well with proposed theoretical model.

20.
Polymers (Basel) ; 10(1)2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-30966129

RESUMO

In this work, we report about the mechanical relaxation characteristics of an intrinsically self-healable imidazole modified commercial rubber. This kind of self-healing rubber was prepared by melt mixing of 1-butyl imidazole with bromo-butyl rubber (bromine modified isoprene-isobutylene copolymer, BIIR). By this melt mixing process, the reactive allylic bromine of bromo-butyl rubber was converted into imidazole bromide salt. The resulting development of an ionic character to the polymer backbone leads to an ionic association of the groups which ultimately results to the formation of a network structure of the rubber chains. The modified BIIR thus behaves like a robust crosslinked rubber and shows unusual self-healing properties. The non-covalent reversible network has been studied in detail with respect to stress relaxation experiments, scanning electron microscopic and X-ray scattering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA