Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Kidney Int ; 103(3): 607-615, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574950

RESUMO

ALG8 protein-truncating variants (PTVs) have previously been described in patients with polycystic liver disease and in some cases cystic kidney disease. Given a lack of well-controlled studies, we determined whether individuals heterozygous for ALG8 PTVs are at increased risk of cystic kidney disease in a large, unselected health system-based observational cohort linked to electronic health records in Pennsylvania (Geisinger-Regeneron DiscovEHR MyCode study). Out of 174,172 patients, 236 were identified with ALG8 PTVs. Using ICD-based outcomes, patients with these variants were significantly at increased risk of having any kidney/liver cyst diagnosis (Odds Ratio 2.42, 95% confidence interval: 1.53-3.85), cystic kidney disease (3.03, 1.26-7.31), and nephrolithiasis (1.89, 1.96-2.97). To confirm this finding, blinded radiology review of computed tomography and magnetic resonance imaging studies was completed in a matched cohort of 52 thirty-plus year old ALG8 PTV heterozygotes and related non-heterozygotes. ALG8 PTV heterozygotes were significantly more likely to have cystic kidney disease, defined as four or more kidney cysts (57.7% vs. 7.7%), or bilateral kidney cysts (69.2% vs. 15.4%), but not one or more liver cyst (11.5% vs. 7.7%). In publicly available UK Biobank data, ALG8 PTV heterozygotes were at significantly increased risk of ICD code N28 (other disorders of kidney/ureter) (3.85% vs. 1.33%). ALG8 PTVs were not associated with chronic kidney disease or kidney failure in the MyCode study or the UK Biobank data. Thus, PTVs in ALG8 result in increased risk of a mild cystic kidney disease phenotype.


Assuntos
Cistos , Hepatopatias , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Humanos , Doenças Renais Policísticas/patologia , Rim/patologia , Cistos/genética , Hepatopatias/diagnóstico , Hepatopatias/epidemiologia , Hepatopatias/genética , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/epidemiologia , Rim Policístico Autossômico Dominante/genética , Glucosiltransferases
2.
JAMA ; 328(24): 2412-2421, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36573973

RESUMO

Importance: Most studies of autosomal dominant polycystic kidney disease (ADPKD) genetics have used kidney specialty cohorts, focusing on PKD1 and PKD2. These can lead to biased estimates of population prevalence of ADPKD-associated gene variants and their phenotypic expression. Objective: To determine the prevalence of ADPKD and contributions of PKD1, PKD2, and other genes related to cystic kidney disease in a large, unselected cohort. Design, Setting, and Participants: This retrospective observational study used an unselected health system-based cohort in central and northeast Pennsylvania with exome sequencing (enrolled from 2004 to 2020) and electronic health record data (up to October 2021). The genotype-first approach included the entire cohort and the phenotype-first approach focused on patients with ADPKD diagnosis codes, confirmed by chart and imaging review. Exposures: Loss-of-function (LOF) variants in PKD1, PKD2, and other genes associated with cystic kidney disease (ie, ALG8, ALG9, DNAJB11, GANAB, HNF1B, IFT140, SEC61B, PKHD1, PRKCSH, SEC63); likely pathogenic missense variants in PKD1 and PKD2. Main Outcomes and Measures: Genotype-first analysis: ADPKD diagnosis code (Q61.2, Q61.3, 753.13, 753.12); phenotype-first analysis: presence of a rare variant in PKD1, PKD2, or other genes associated with cystic kidney disease. Results: Of 174 172 patients (median age, 60 years; 60.6% female; 93% of European ancestry), 303 patients had ADPKD diagnosis codes, including 235 with sufficient chart review data for confirmation. In addition to PKD1 and PKD2, LOF variants in IFT140, GANAB, and HNF1B were associated with ADPKD diagnosis after correction for multiple comparisons. Among patients with LOF variants in PKD1, 66 of 68 (97%) had ADPKD; 43 of 43 patients (100%) with LOF variants in PKD2 had ADPKD. In contrast, only 24 of 77 patients (31.2%) with a PKD1 missense variant previously classified as "likely pathogenic" had ADPKD, suggesting misclassification or variable penetrance. Among patients with ADPKD diagnosis confirmed by chart review, 180 of 235 (76.6%) had a potential genetic cause, with the majority being rare variants in PKD1 (127 patients) or PKD2 (34 patients); 19 of 235 (8.1%) had variants in other genes associated with cystic kidney disease. Of these 235 patients with confirmed ADPKD, 150 (63.8%) had a family history of ADPKD. The yield for a genetic determinant of ADPKD was higher for those with a family history of ADPKD compared with those without family history (91.3% [137/150] vs 50.6% [43/85]; difference, 40.7% [95% CI, 29.2%-52.3%]; P < .001). Previously unreported PKD1, PKD2, and GANAB variants were identified with pedigree data suggesting pathogenicity, and several PKD1 missense variants previously reported as likely pathogenic appeared to be benign. Conclusions and Relevance: This study demonstrates substantial genetic and phenotypic variability in ADPKD among patients within a regional health system in the US.


Assuntos
Sequenciamento do Exoma , Rim Policístico Autossômico Dominante , Feminino , Humanos , Masculino , Rim/patologia , Mutação , Rim Policístico Autossômico Dominante/genética , Estudos Retrospectivos , Canais de Cátion TRPP/genética , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA