Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell Mol Neurobiol ; 43(7): 3653-3668, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37355492

RESUMO

Alzheimer's disease (AD) is characterized pathologically by amyloid ß (Aß)-containing plaques. Generation of Aß from amyloid precursor protein (APP) by two enzymes, ß- and γ-secretase, has therefore been in the AD research spotlight for decades. Despite this, how the physical interaction of APP with the secretases influences APP processing is not fully understood. Herein, we compared two genetically identical human iPSC-derived neuronal cell types: low Aß-secreting neuroprogenitor cells (NPCs) and high Aß-secreting mature neurons, as models of low versus high Aß production. We investigated levels of substrate, enzymes and products of APP amyloidogenic processing and correlated them with the proximity of APP to ß- and γ-secretase in endo-lysosomal organelles. In mature neurons, increased colocalization of full-length APP with the ß-secretase BACE1 correlated with increased ß-cleavage product sAPPß. Increased flAPP/BACE1 colocalization was mainly found in early endosomes. In the same way, increased colocalization of APP-derived C-terminal fragment (CTF) with presenilin-1 (PSEN1), the catalytic subunit of γ-secretase, was seen in neurons as compared to NPCs. Furthermore, most of the interaction of APP with BACE1 in low Aß-secreting NPCs seemed to derive from CTF, the remaining APP part after BACE1 cleavage, indicating a possible novel product-enzyme inhibition. In conclusion, our results suggest that interaction of APP and APP cleavage products with their secretases can regulate Aß production both positively and negatively. ß- and γ-Secretases are difficult targets for AD treatment due to their ubiquitous nature and wide range of substrates. Therefore, targeting APP-secretase interactions could be a novel treatment strategy for AD. Colocalization of APP species with BACE1 in a novel model of low- versus high-Aß secretion-Two genetically identical human iPSC-derived neuronal cell types: low Aß-secreting neuroprogenitor cells (NPCs) and high Aß secreting mature neurons, were compared. Increased full-length APP (flAPP)/BACE1 colocalization in early endosomes was seen in neurons, while APP-CTF/BACE1 colocalization was much higher than flAPP/BACE1 colocalization in NPCs, although the cellular location was not determined.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Precursor de Proteína beta-Amiloide , Peptídeos beta-Amiloides , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Neurônios
2.
Prog Neurobiol ; 200: 101969, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33278524

RESUMO

Alcohol causes stimulatory behavioral responses by activating reward-processing brain areas including the laterodorsal (LDTg) and ventral tegmental areas (VTA) and the nucleus accumbens (NAc). Systemic administration of the amylin and calcitonin receptor agonist salmon calcitonin (sCT) attenuates alcohol-mediated behaviors, but the brain sites involved in this process remain unknown. Firstly, to identify potential sCT sites of action in the brain, we used immunohistochemistry after systemic administration of fluorescent-labeled sCT. We then performed behavioral experiments to explore how infused sCT into the aforementioned reward-processing brain areas affects acute alcohol-induced behaviors in mice and chronic alcohol consumption in rats. We show that peripheral sCT crosses the blood brain barrier and is detected in all the brain areas studied herein. sCT infused into the LDTg attenuates alcohol-evoked dopamine release in the NAc shell in mice and reduces alcohol intake in rats. sCT into the VTA blocks alcohol-induced locomotor stimulation and dopamine release in the NAc shell in mice and decreases alcohol intake in rats. Lastly, sCT into the NAc shell prevents alcohol-induced locomotor activity in mice. Our data suggest that central sCT modulates the ability of alcohol to activate reward-processing brain regions.


Assuntos
Encéfalo , Animais , Encéfalo/metabolismo , Dopamina , Etanol , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Camundongos , Neuropeptídeos/metabolismo , Núcleo Accumbens , Ratos , Receptores da Calcitonina , Recompensa
3.
Viruses ; 13(10)2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34696502

RESUMO

Herpes simplex virus 1 (HSV-1) and 2 (HSV-2) can infect the central nervous system (CNS) with dire consequences; in children and adults, HSV-1 may cause focal encephalitis, while HSV-2 causes meningitis. In neonates, both viruses can cause severe, disseminated CNS infections with high mortality rates. Here, we differentiated human induced pluripotent stem cells (iPSCs) towards cortical neurons for infection with clinical CNS strains of HSV-1 or HSV-2. Progenies from both viruses were produced at equal quantities in iPSCs, neuroprogenitors and cortical neurons. HSV-1 and HSV-2 decreased viability of neuroprogenitors by 36.0% and 57.6% (p < 0.0001), respectively, 48 h post-infection, while cortical neurons were resilient to infection by both viruses. However, in these functional neurons, both HSV-1 and HSV-2 decreased gene expression of two markers of synaptic activity, CAMK2B and ARC, and affected synaptic activity negatively in multielectrode array experiments. However, unaltered secretion levels of the neurodegeneration markers tau and NfL suggested intact axonal integrity. Viral replication of both viruses was found after six days, coinciding with 6-fold and 22-fold increase in gene expression of cellular RNA polymerase II by HSV-1 and HSV-2, respectively. Our results suggest a resilience of human cortical neurons relative to the replication of HSV-1 and HSV-2.


Assuntos
Diferenciação Celular , Herpes Simples/virologia , Herpesvirus Humano 1 , Herpesvirus Humano 2 , Neurônios/virologia , Diferenciação Celular/genética , Sobrevivência Celular , Sistema Nervoso Central , Regulação da Expressão Gênica , Herpes Simples/patologia , Humanos , Células-Tronco Pluripotentes Induzidas , Neurônios/patologia , Replicação Viral/fisiologia
4.
Alzheimers Res Ther ; 12(1): 63, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32456694

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common form of age-related neurodegenerative diseases. Cerebral deposition of Aß peptides, especially Aß42, is considered the major neuropathological hallmark of AD and the putative cause of AD-related neurotoxicity. Aß peptides are produced by sequential proteolytic processing of APP, with ß-secretase (BACE) being the initiating enzyme. Therefore, BACE has been considered an attractive therapeutic target in AD research and several BACE inhibitors have been tested in clinical trials, but so far, all have had negative outcomes or even led to worsening of cognitive function. AD can be triggered by Aß years before the first symptoms appear and one reason for the failures could be that the clinical trials were initiated too late in the disease process. Another possible explanation could be that BACE inhibition alters physiological APP processing in a manner that impairs synaptic function, causing cognitive deterioration. METHODS: The aim of this study was to investigate if partial BACE inhibition, mimicking the putative protective effect of the Icelandic mutation in the APP gene, could reduce Aß generation without affecting synaptic transmission. To investigate this, we used an optical electrophysiology platform, in which effects of compounds on synaptic transmission in cultured neurons can be monitored. We employed this method on primary cortical rat neuronal cultures treated with three different BACE inhibitors (BACE inhibitor IV, LY2886721, and lanabecestat) and monitored Aß secretion into the cell media. RESULTS: We found that all three BACE inhibitors tested decreased synaptic transmission at concentrations leading to significantly reduced Aß secretion. However, low-dose BACE inhibition, resulting in less than a 50% decrease in Aß secretion, did not affect synaptic transmission for any of the inhibitors tested. CONCLUSION: Our results indicate that Aß production can be reduced by up to 50%, a level of reduction of relevance to the protective effect of the Icelandic mutation, without causing synaptic dysfunction. We therefore suggest that future clinical trials aimed at prevention of Aß build-up in the brain should aim for a moderate CNS exposure of BACE inhibitors to avoid side effects on synaptic function.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Animais , Ácido Aspártico Endopeptidases/metabolismo , Ratos , Transmissão Sináptica
6.
Sci Rep ; 10(1): 601, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953468

RESUMO

One of the neuropathological hallmarks of Alzheimer's disease (AD) is cerebral deposition of amyloid plaques composed of amyloid ß (Aß) peptides and the cerebrospinal fluid concentrations of those peptides are used as a biomarker for AD. Mature induced pluripotent stem cell (iPSC)-derived cortical neurons secrete Aß peptides in ratios comparable to those secreted to cerebrospinal fluid in human, however the protocol to achieve mature neurons is time consuming. In this study, we investigated if differentiation of neuroprogenitor cells (NPCs) in BrainPhys medium, previously reported to enhance synaptic function of neurons in culture, would accelerate neuronal maturation and, thus increase Aß secretion as compared to the conventional neural maintenance medium. We found that NPCs cultured in BrainPhys displayed increased expression of markers for cortical deep-layer neurons, increased synaptic maturation and number of astroglial cells. This accelerated neuronal maturation was accompanied by increased APP processing, resulting in increased secretion of Aß peptides and an increased Aß38 to Aß40 and Aß42 ratio. However, during long-term culturing in BrainPhys, non-neuronal cells appeared and eventually took over the cultures. Taken together, BrainPhys culturing accelerated neuronal maturation and increased Aß secretion from iPSC-derived cortical neurons, but changed the cellular composition of the cultures.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Meios de Cultura/química , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/citologia , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Sinapses Elétricas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo
7.
J Alzheimers Dis ; 74(4): 1143-1156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32144989

RESUMO

BACKGROUND: Tau aggregation in neurons and glial cells characterizes tauopathies as Alzheimer's disease (AD), progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). Tau proteolysis has been proposed as a trigger for tau aggregation and tau fragments have been observed in brain and cerebrospinal fluid (CSF). Our group identified a major tau cleavage at amino acid (aa) 224 in CSF; N-terminal tau fragments ending at aa 224 (N-224) were significantly increased in AD and lacked correlation to total tau (t-tau) and phosphorylated tau (p-tau) in PSP and CBD. OBJECTIVE: Previous studies have shown cleavage from calpain proteases at sites adjacent to aa 224. Our aim was to investigate if calpain-1 or -2 could be responsible for cleavage at aa 224. METHODS: Proteolytic activity of calpain-1, calpain-2, and brain protein extract was assessed on a custom tau peptide (aa 220-228), engineered with fluorescence resonance energy transfer (FRET) technology. Findings were confirmed with in-gel trypsination and mass spectrometry (MS) analysis of brain-derived bands with proteolytic activity on the FRET substrate. Finally, knock-down of the calpain-2 catalytic subunit gene (CAPN2) was performed in a neuroblastoma cell line (SH-SY5Y). RESULTS: Calpain-2 and brain protein extract, but not calpain-1, showed proteolytic activity on the FRET substrate. MS analysis of active gel bands revealed presence of calpain-2 subunits, but not calpain-1. Calpain-2 depletion and chemical inhibition suppressed proteolysis of the FRET substrate. CAPN2 knock-down caused a 76.4% reduction of N-224 tau in the cell-conditioned media. CONCLUSIONS: Further investigation of the calpain-2 pathway in the pathogenesis of tauopathies is encouraged.


Assuntos
Calpaína/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Western Blotting , Encéfalo/metabolismo , Linhagem Celular Tumoral , Eletroforese em Gel de Ágar , Feminino , Transferência Ressonante de Energia de Fluorescência , Humanos , Imunoprecipitação , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Fragmentos de Peptídeos/metabolismo , Tauopatias/etiologia
8.
Sci Rep ; 10(1): 10127, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576936

RESUMO

Understanding the biological function of amyloid beta (Aß) precursor protein (APP) beyond its role in Alzheimer's disease is emerging. Yet, its function during embryonic development is poorly understood. The zebrafish APP orthologue, Appb, is strongly expressed during early development but thus far has only been studied via morpholino-mediated knockdown. Zebrafish enables analysis of cellular processes in an ontogenic context, which is limited in many other vertebrates. We characterized zebrafish carrying a homozygous mutation that introduces a premature stop in exon 2 of the appb gene. We report that appb mutants are significantly smaller until 2 dpf and display perturbed enveloping layer (EVL) integrity and cell protrusions at the blastula stage. Moreover, appb mutants surviving beyond 48 hpf exhibited no behavioral defects at 6 dpf and developed into healthy and fertile adults. The expression of the app family member, appa, was also found to be altered in appb mutants. Taken together, we show that appb is involved in the initial development of zebrafish by supporting the integrity of the EVL, likely by mediating cell adhesion properties. The loss of Appb might then be compensated for by other app family members to maintain normal development.


Assuntos
Adesão Celular/genética , Adesão Celular/fisiologia , Embrião não Mamífero , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Precursor de Proteína beta-Amiloide , Animais , Células Cultivadas , Técnicas de Cultura Embrionária , Éxons/genética , Mutação
9.
Neurochem Int ; 121: 38-49, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30342961

RESUMO

Synaptic function and neurotransmitter release are regulated by specific proteins. Cortical neuronal differentiation of human induced pluripotent stem cells (hiPSC) provides an experimental model to obtain more information about synaptic development and physiology in vitro. In this study, expression and secretion of the synaptic proteins, neurogranin (NRGN), growth-associated protein-43 (GAP-43), synaptosomal-associated protein-25 (SNAP-25) and synaptotagmin-1 (SYT-1) were analyzed during cortical neuronal differentiation. Protein levels were measured in cells, modeling fetal cortical development and in cell-conditioned media which was used as a model of cerebrospinal fluid (CSF), respectively. Human iPSC-derived cortical neurons were maintained over a period of at least 150 days, which encompasses the different stages of neuronal development. The differentiation was divided into the following stages: hiPSC, neuro-progenitors, immature and mature cortical neurons. We show that NRGN was first expressed and secreted by neuro-progenitors while the maximum was reached in mature cortical neurons. GAP-43 was expressed and secreted first by neuro-progenitors and its expression increased markedly in immature cortical neurons. SYT-1 was expressed and secreted already by hiPSC but its expression and secretion peaked in mature neurons. SNAP-25 was first detected in neuro-progenitors and the expression and secretion increased gradually during neuronal stages reaching a maximum in mature neurons. The sensitive analytical techniques used to monitor the secretion of these synaptic proteins during cortical development make these data unique, since the secretion of these synaptic proteins has not been investigated before in such experimental models. The secretory profile of synaptic proteins, together with low release of intracellular content, implies that mature neurons actively secrete these synaptic proteins that previously have been associated with neurodegenerative disorders, including Alzheimer's disease. These data support further studies of human neuronal and synaptic development in vitro, and would potentially shed light on the mechanisms underlying altered concentrations of the proteins in bio-fluids in neurodegenerative diseases.


Assuntos
Diferenciação Celular/fisiologia , Córtex Cerebral/metabolismo , Proteínas de Membrana/biossíntese , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Linhagem Celular , Células Cultivadas , Córtex Cerebral/citologia , Expressão Gênica , Humanos , Proteínas de Membrana/genética , Neurogranina/biossíntese , Neurogranina/genética , Proteína 25 Associada a Sinaptossoma/biossíntese , Proteína 25 Associada a Sinaptossoma/genética , Sinaptotagmina I/biossíntese , Sinaptotagmina I/genética
10.
Sci Rep ; 6: 29200, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27383650

RESUMO

Amyloid precursor protein (APP) and its cleavage product amyloid ß (Aß) have been thoroughly studied in Alzheimer's disease. However, APP also appears to be important for neuronal development. Differentiation of induced pluripotent stem cells (iPSCs) towards cortical neurons enables in vitro mechanistic studies on human neuronal development. Here, we investigated expression and proteolytic processing of APP during differentiation of human iPSCs towards cortical neurons over a 100-day period. APP expression remained stable during neuronal differentiation, whereas APP processing changed. α-Cleaved soluble APP (sAPPα) was secreted early during differentiation, from neuronal progenitors, while ß-cleaved soluble APP (sAPPß) was first secreted after deep-layer neurons had formed. Short Aß peptides, including Aß1-15/16, peaked during the progenitor stage, while processing shifted towards longer peptides, such as Aß1-40/42, when post-mitotic neurons appeared. This indicates that APP processing is regulated throughout differentiation of cortical neurons and that amyloidogenic APP processing, as reflected by Aß1-40/42, is associated with mature neuronal phenotypes.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Diferenciação Celular , Córtex Cerebral/patologia , Neurônios/patologia , Processamento de Proteína Pós-Traducional , Potenciais de Ação , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA