Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 43(6): 397-401, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29655511

RESUMO

Long-term transcriptional gene silencing has been hampered by delivery issues. A potential solution is the application of RNA viruses that generate small RNAs without any DNA intermediate. Long-term therapy for various diseases is expected after a single administration.


Assuntos
Inativação Gênica , Vírus de RNA/genética , Transcrição Gênica/genética , Humanos , Ativação Transcricional
2.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216222

RESUMO

Regulatory changes occurring early in colorectal cancer development remain poorly investigated. Since the majority of cases develop from polyps in the adenoma-carcinoma transition, a search of early molecular features, such as aberrations in miRNA expression occurring prior to cancer development, would enable identification of potentially causal, rather than consequential, candidates in the progression of polyp to cancer. In the current study, by employing small RNA-seq profiling of colon biopsy samples, we described differentially expressed miRNAs and their isoforms in the adenoma-carcinoma transition. Analysis of healthy-adenoma-carcinoma sequence in an independent validation group enabled us to identify early deregulated miRNAs including hsa-miR-1246 and hsa-miR-215-5p, the expressions of which are, respectively, gradually increasing and decreasing. Loss-of-function experiments revealed that inhibition of hsa-miR-1246 lead to reduced cell viability, colony formation, and migration rate, thereby indicating an oncogenic effect of this miRNA in vitro. Subsequent western blot and luciferase reporter assay provided evidence of hsa-miR-1246 being involved in the regulation of target AXIN2 and CFTR genes' expression. To conclude, the present study revealed possible involvement of hsa-miR-1246 in early colorectal cancer development and regulation of tumor suppressors AXIN2 and CFTR.


Assuntos
Adenoma/genética , Proteína Axina/genética , Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , MicroRNAs/genética , Células CACO-2 , Carcinogênese/genética , Linhagem Celular Tumoral , Colo/patologia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Células HCT116 , Humanos
3.
Molecules ; 26(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34641546

RESUMO

One of current applications of electroporation is electrochemotherapy and electroablation for local cancer treatment. Both of these electroporation modalities share some similarities with radiation therapy, one of which could be the bystander effect. In this study, we aimed to investigate the role of the bystander effect following these electroporation-based treatments. During direct CHO-K1 cell treatment, cells were electroporated using one 100 µs duration square wave electric pulse at 1400 V/cm (for bleomycin electrotransfer) or 2800 V/cm (for irreversible electroporation). To evaluate the bystander effect, the medium was taken from directly treated cells after 24 h incubation and applied on unaffected cells. Six days after the treatment, cell viability and colony sizes were evaluated using the cell colony formation assay. The results showed that the bystander effect after bleomycin electrotransfer had a strong negative impact on cell viability and cell colony size, which decreased to 2.8% and 23.1%, respectively. On the contrary, irreversible electroporation induced a strong positive bystander effect on cell viability, which increased to 149.3%. In conclusion, the results presented may serve as a platform for further analysis of the bystander effect after electroporation-based therapies and may ultimately lead to refined application of these therapies in clinics.


Assuntos
Bleomicina/farmacologia , Efeito Espectador , Eletroporação/métodos , Alarminas/metabolismo , Animais , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Eletroquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo
4.
Int J Mol Sci ; 21(14)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708220

RESUMO

Deregulated microRNA (miRNA) expression profiles and their contribution to carcinogenesis have been observed in virtually all types of human cancer. However, their role in the pathogenesis of rare mesenchymal gastrointestinal stromal tumors (GISTs) is not well defined, yet. In this study, we aimed to investigate the role of two miRNAs strongly downregulated in GIST-miR-375-3p and miR-200b-3p-in the pathogenesis of GIST. To achieve this, miRNA mimics were transfected into GIST-T1 cells and changes in the potential target gene mRNA and protein expression, as well as alterations in cell viability, migration, apoptotic cell counts and direct miRNA-target interaction, were evaluated. Results revealed that overexpression of miR-375-3p downregulated the expression of KIT mRNA and protein by direct binding to KIT 3'UTR, reduced GIST cell viability and migration rates. MiR-200b-3p lowered expression of ETV1 protein, directly targeted and lowered expression of EGFR mRNA and protein, and negatively affected cell migration rates. To conclude, the present study identified that miR-375-3p and miR-200b-3p have a tumor-suppressive role in GIST.


Assuntos
Apoptose/genética , Proliferação de Células/genética , Neoplasias Gastrointestinais/metabolismo , Tumores do Estroma Gastrointestinal/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Movimento Celular/genética , Sobrevivência Celular/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias Gastrointestinais/genética , Tumores do Estroma Gastrointestinal/genética , Humanos , MicroRNAs/genética , Fatores de Transcrição/metabolismo
5.
Int J Mol Sci ; 21(3)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013265

RESUMO

Gastric cancer (GC) is one of the most common and lethal gastrointestinal malignancies worldwide. Many studies have shown that development of GC and other malignancies is mainly driven by alterations of cellular signaling pathways. MicroRNAs (miRNAs) are small noncoding molecules that function as tumor-suppressors or oncogenes, playing an essential role in a variety of fundamental biological processes. In order to understand the functional relevance of miRNA dysregulation, studies analyzing their target genes are of major importance. Here, we chose to analyze two miRNAs, miR-20b and miR-451a, shown to be deregulated in many different malignancies, including GC. Deregulated expression of miR-20b and miR-451a was determined in GC cell lines and the INS-GAS mouse model. Using Western Blot and luciferase reporter assay we determined that miR-20b directly regulates expression of PTEN and TXNIP, and miR-451a: CAV1 and TSC1. Loss-of-function experiments revealed that down-regulation of miR-20b and up-regulation of miR-451a expression exhibits an anti-tumor effect in vitro (miR-20b: reduced viability, colony formation, increased apoptosis rate, and miR-451a: reduced colony forming ability). To summarize, the present study identified that expression of miR-20b and miR-451a are deregulated in vitro and in vivo and have a tumor suppressive role in GC through regulation of the PI3K/AKT/mTOR signaling pathway.


Assuntos
MicroRNAs/metabolismo , Transdução de Sinais , Neoplasias Gástricas/patologia , Animais , Antagomirs/metabolismo , Apoptose , Proteínas de Transporte/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo
6.
Electromagn Biol Med ; 39(1): 1-8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31884821

RESUMO

Measurement of cell transmembrane potential (TMP) is a complex methodology involving patch-clamp methods or fluorescence-based potentiometric markers, which have limited to no applicability during ultrafast charging and relaxation phenomena. In such a case, analytical methods are applied for evaluation of the voltage potential changes in biological cells. In this work, the TMP-based electrotransfer mechanism during ultra-high frequency (≥1 MHz) electric fields is studied and the phenomenon of rapid membrane charge accumulation, which is non-occurrent during conventional low-frequency electroporation is simulated using finite element method (FEM). The influence of extracellular medium conductivity (0.1, 1.5 S/m) and pulse rise/fall times (10-50 ns) TMP generation are presented. It is shown that the medium conductivity has a dramatic influence on the electroporation process in the high-frequency range of applied pulsed electric fields (PEF). The applied model allowed to grasp the differences in polarization between 100 and 900 ns PEF and enabled successful prediction of the experimental outcome of propidium iodide electrotransfer into CHO-K1 cells and the conductivity-dependent patterns of MHz range PEF-triggered electroporation were determined. The results of this study form recommendations for development and pre-evaluation of future PEF protocols and generators based on ultra-high frequency electroporation for anticancer and gene therapies.


Assuntos
Eletroporação , Análise de Elementos Finitos , Micro-Ondas , Animais , Transporte Biológico/efeitos da radiação , Células CHO , Cricetulus , Espaço Extracelular/metabolismo , Espaço Extracelular/efeitos da radiação , Potenciais da Membrana/efeitos da radiação , Propídio/metabolismo
7.
Arch Biochem Biophys ; 666: 156-160, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30543787

RESUMO

Electroporation is a widely established method for molecular delivery across electric field perturbed plasma membrane. It can be used as a non-viral DNA transfection method, or as a way to achieve small molecule delivery to or extraction from cells. We examined the possibility of combining the DNA delivery to the cells with small molecule transport across electroporated plasma membrane. The results show that the presence of DNA in electroporation medium increases the extraction of fluorescent dye calcein from calcein-AM loaded cells as well as the delivery of small-molecule drug bleomycin to the cells. We propose that these results may have implications in enhanced drug delivery using electroporation both in vivo and in clinics.


Assuntos
DNA/administração & dosagem , Eletroporação/métodos , Plasmídeos , Animais , Bleomicina/administração & dosagem , Membrana Celular/metabolismo , Fluoresceínas/química , Corantes Fluorescentes/química , Transfecção
8.
Int J Mol Sci ; 20(16)2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430949

RESUMO

Electrochemotherapy is an efficient method for the local treatment of cutaneous and subcutaneous metastases, but its efficacy as a systemic treatment remains low. The application of gene electrotransfer (GET) to transfer DNA coding for immune system modulating molecules could allow for a systemic effect, but its applications are limited because of possible side effects, e.g., immune system overactivation and autoimmune response. In this paper, we present the simultaneous electrotransfer of bleomycin and plasmid DNA as a method to increase the systemic effect of bleomycin-based electrochemotherapy. With appropriately selected concentrations of bleomycin and plasmid DNA, it is possible to achieve efficient cell transfection while killing cells via the cytotoxic effect of bleomycin at later time points. We also show the dynamics of both cell electrotransfection and cell death after the simultaneous electrotransfer of bleomycin and plasmid DNA. Therefore, this method could have applications in achieving the transient, cell death-controlled expression of immune system activating genes while retaining efficient bleomycin mediated cell killing.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Bleomicina/farmacologia , DNA/genética , Plasmídeos/genética , Transfecção/métodos , Animais , Antibióticos Antineoplásicos/administração & dosagem , Bleomicina/administração & dosagem , Células CHO , Morte Celular/efeitos dos fármacos , Cricetulus , DNA/administração & dosagem , Eletroporação/métodos , Expressão Gênica/efeitos dos fármacos , Plasmídeos/administração & dosagem
9.
J Membr Biol ; 251(1): 119-130, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29143077

RESUMO

The aim of this study was to investigate the dependence of calcein extraction and cell viability on the parameters of pulsed electric field (PEF). Two different approaches concerning PEF parameters were investigated: (1) extraction efficiency and cell viability dependence on pulse number, exploiting 1200 V/cm 100 µs duration high voltage (HV) electric pulses and (2) extraction efficiency and cell viability dependence on the pulses with different duration (44-400 µs) and electric field strength (600-1800 V/cm) that result in the same amount of electric field energy delivered to Chinese hamster ovary cells. Extraction efficiency was evaluated as a percentage ratio of calcein fluorescence intensity prior and after PEF treatment. Cell viability was evaluated using PI test and cell clonogenic assay. Moreover, calcein release dynamics from cells after 600 V/cm 400 µs, 1200 V/cm 100 µs, and 1800 V/cm 44 µs was evaluated. Our results show that HV pulses induce instant calcein extraction due to reversible electroporation; however, subsequent calcein leakage over time was only observed when 9 HV pulses of 1800 V/cm 44 µs were used. The increased number of pulses resulted in more efficient total calcein extraction. With the same total energy delivered via electric pulses, the increase of calcein extraction efficiency was more dependent on pulse strength rather than pulse duration. The highest calcein extraction efficiency (84.5 ± 7.4%) was obtained using 9 electric field pulses of 1800 V/cm, 44 µs at 1 Hz. Furthermore, the extraction efficiency can be significantly enhanced if external mechanical stress (pipetting) is applied to cells. Cell viability was determined to be dependent on different PEF exposure parameters. It varied from 96.8 ± 4.8 to 31.2 ± 8.9%, implying the possibility to adjust PEF parameter combinations to maintain high cell viability.


Assuntos
Eletroporação/métodos , Fluoresceínas/metabolismo , Animais , Permeabilidade da Membrana Celular , Sobrevivência Celular , Eletroforese em Gel de Campo Pulsado , Citometria de Fluxo
10.
Adv Anat Embryol Cell Biol ; 227: 73-92, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28980041

RESUMO

The cell membrane represents a major barrier for efficient delivery of exogenous molecules, either pharmaceuticals or genetic material, under both in vitro and in vivo conditions. The number of methods employed to attempt safe, efficient, and local drug and gene delivery has increased during the recent years. One method for membrane permeabilization, electroporation, has already been translated to clinical practice for localized anticancer drug delivery and is termed "electrochemotherapy". Clinical trials for gene delivery using electroporation as well as drug delivery using another cell permeabilization method, sonoporation, are also underway. This review focuses on these two methods, including their fundamental principles and state-of-the-art applications. Other techniques, such as microinjection, magnetoporation, photoporation, electrospray, and hydrodynamic and ballistic gene delivery, are also discussed.


Assuntos
Membrana Celular/metabolismo , Sistemas de Liberação de Medicamentos , Técnicas de Transferência de Genes , Eletroquimioterapia , Eletroporação , Humanos
11.
J Membr Biol ; 249(5): 677-689, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27317391

RESUMO

In this study, we aimed to determine whether the combination of electroporation (EP) and ultrasound (US) waves (sonoporation) can result in an increased intracellular delivery of anticancer drug bleomycin. CHO cells were treated with electric pulses (1 or 8 high voltage pulses of 800 or 1200 V/cm, 100 µs or 1 low voltage pulse of 100 or 250 V/cm, 100 ms) and with 880 kHz US of 320 or 500 kPa peak negative pressure, 100 % duty cycle, applied for 2 s in the presence or absence of exogenously added contrast agent microbubbles. Various sequential or simultaneous combinations of EP and sonoporation were used. The results of the study showed that i) sequential treatment of cells by EP and sonoporation enhanced bleomycin electrosonotransfer at the reduced energy of electric field and US; ii) sequential combination of EP and sonoporation induced a summation effect which at some conditions was more prominent when the cells were treated first by EP and then by sonoporation; iii) the most efficient intracellular delivery of bleomycin was achieved by the simultaneous application of cell EP and sonoporation resulting in percentage of reversibly porated cells above the summation level; and iv) compared with sequential application of EP and sonoporation, simultaneous use of electric pulses and US increased cell viability in the absence of bleomycin.


Assuntos
Bleomicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Eletroporação , Ondas Ultrassônicas , Animais , Antineoplásicos/administração & dosagem , Células CHO , Sobrevivência Celular , Cricetulus , Eletroporação/métodos , Microbolhas
12.
J Gene Med ; 17(3-5): 80-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25761762

RESUMO

BACKGROUND: In the present study, we aimed to evaluate the efficiency of drug and gene electrotransfer into cells in vitro depending on medium viscosity. METHODS: Experiments were performed using Chinese hamster ovary cells. Efficiency of molecular electrotransfer depending of medium viscosity was evaluated using two different electroporation conditions: a high-voltage (HV) pulse and a combination of a high-voltage pulse and a low-voltage pulse (HV + LV). To evaluate the efficiency of molecular electrotransfer, anticancer drug bleomycin and two different plasmids coding for green fluorescent protein and luciferase were used. RESULTS: We found that a slight increase in medium viscosity from 1.3-1.4 mPa·s significantly decreased the transfection efficiency, both in terms of transfected cells and total protein production, which was abolished completely with an increase in medium viscosity to 6.1 mPa·s. Notably, at this medium viscosity, electrotransfer of the small anticancer drug was still efficient. Using HV and HV + LV pulse combinations, we showed that a decrease of DNA electrotransfer, especially at lower medium viscosities, can be compensated for by the LV pulse to some extent. On the other hand, the addition of the LV pulse after the HV pulse did not have any positive effect on the efficiency of bleomycin electrotransfer. CONCLUSIONS: These findings demonstrate that transfection is very susceptible to medium viscosity and highlights the importance of the electrophoretic component in experiments when a considerable transfection level is needed.


Assuntos
Membrana Celular/metabolismo , Meios de Cultura/química , Eletroporação/métodos , Técnicas de Transferência de Genes , Animais , Células CHO , Contagem de Células , Cricetinae , Cricetulus , DNA/metabolismo , Eletricidade , Proteínas de Fluorescência Verde/metabolismo , Viscosidade
13.
J Membr Biol ; 248(5): 857-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26077843

RESUMO

The aim of this study was to compare different and commonly used cell viability assays after CHO cells treatment with anticancer drug bleomycin (20 nM), high voltage (HV) electric pulses (4 pulses, 1200 V/cm, 100 µs, 1 Hz), and combination of bleomycin and HV electric pulses. Cell viability was measured using clonogenic assay, propidium iodide (PI) assay, MTT assay, and employing flow cytometry modality to precisely count cells in definite volume of the sample (flow cytometry assay). Results showed that although clonogenic cell viability drastically decreased correspondingly to 57 and 3 % after cell treatment either with HV pulses or combination of bleomycin and HV pulses (bleomycin electrotransfer), PI assay performed ~15 min after the treatments indicated nearly 100 % cell viability. MTT assay performed at 6-72 h time points after these treatments revealed that MTT cell viability is highly dependent on evaluation time point and decreased with later evaluation time points. Nevertheless, in comparison to clonogenic cell viability, MTT cell viability after bleomycin electrotransfer at all testing time points was significantly higher. Flow cytometry assay if used at later times, 2-3 days after the treatment, allowed reliable evaluation of cell viability. In overall, our results showed that in order to estimate cell viability after cell treatment with combination of the bleomycin and electroporation the most reliable method is clonogenic assay. Improper use of PI and MTT assays can lead to misinterpretation of the experimental results.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Bleomicina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Eletroporação/métodos , Animais , Células CHO , Ensaio de Unidades Formadoras de Colônias , Cricetinae , Cricetulus , Citometria de Fluxo , Técnicas In Vitro
14.
Mol Pharm ; 12(10): 3620-7, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26312556

RESUMO

Ultrasound induced microbubble (MB) cavitation is used to significantly enhance cell membrane permeabilization, thereby allowing delivery of various therapeutic agents into cells. In order to monitor and quantitatively control the extent of cavitation the uniform dosimetry model is needed. In present study we have simultaneously performed quantitative evaluation of three main sonoporation factors: (1) MB concentration, (2) MB cavitation extent, and (3) doxorubicin (DOX) sonotransfer into Chinese hamster ovary cells. MB concentration measurement results and passively recorded MB cavitation signals were used for MB sonodestruction rate and spectral root-mean-square (RMS) calculations, respectively. Subsequently, time to maximum value of RMS and inertial cavitation dose (ICD) quantifications were performed for every acoustic pressure value. This comprehensive research has led not only to explanation of relation of ICD and MB sonodestruction rate but also to the development of a new sonoporation metric: the inverse of time to maximum value of RMS (1/time to maximum value of RMS). ICD and MB sonodestruction rate intercorrelation and correlation with DOX sonotransfer suggest inertial cavitation to be the key mechanism for cell sonoporation. All these metrics were successfully used for doxorubicin sonotransfer prediction (R(2) > 0.9, p < 0.01) and therefore shows feasibility to be applied for future dosimetric applications for ultrasound-mediated drug and gene delivery.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Microbolhas/uso terapêutico , Ultrassonografia/métodos , Animais , Células CHO , Cricetulus , Doxorrubicina/administração & dosagem , Técnicas In Vitro
15.
Eur Biophys J ; 44(5): 277-89, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25939984

RESUMO

A short review of biophysical mechanisms for electrotransfer of bioactive molecules through the cell membrane by using electroporation is presented. The concept of transient hydrophilic aqueous pores and membrane electroporation mechanisms of single cells and cells in suspension models are analyzed. Alongside the theoretical approach, some peculiarities of drug and gene electrotransfer into cells and applications in clinical trials are discussed.


Assuntos
Permeabilidade da Membrana Celular , Membrana Celular/metabolismo , Eletroporação , Animais , Membrana Celular/química , Humanos , Compostos Orgânicos/farmacocinética
16.
J Food Sci Technol ; 52(9): 5898-905, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26345006

RESUMO

The influence of Pulsed Electric Field (PEF) pre-treatment of blueberry fruits (Vaccinium myrtillus L.), both on the extraction yield and antioxidant properties of juice obtained by pressing and on the on the recovery of bioactive compounds from berry by-products (press cake) by extraction with solvent, was investigated. PEF treatments carried out at field strengths of 1, 3, and 5 kV/cm and an energy input of 10 kJ/kg achieved a cell disintegration index (Z p ) of 0.70, 0.80, and 0.87, respectively. Mechanical pressing (1.32 bar for 8 min) of PEF-treated berries (1, 3, and 5 kV/cm at 10 kJ/kg) significantly increased the juice yield (+28 %) compared with the untreated sample. The juice obtained from PEF pre-treated berries also had a significantly higher total phenolic content (+43 %), total anthocyanin content (+60 %) and antioxidant activity (+31 %). However, PEF treatment intensity higher than 1 kV/cm did not significantly improve the quantitative or qualitative characteristics of the juice. Compared to the untreated sample, higher amounts of total phenolics (+63 %), total athocyanins (+78 %) and antioxidant activity (+65 %) were detected in the press cake extracts. PEF treatment of higher intensity resulted in better extractability of bioactive compounds from blueberry press cake. The results obtained from this study demonstrate the potential of PEF as a mild pre-treatment method to improve the efficiency of the industrial processing of berry fruits.

17.
Cell Mol Neurobiol ; 34(2): 289-96, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24338202

RESUMO

Regeneration of embryonic and adult dorsal root ganglion (DRG) sensory axons is highly impeded when they encounter neuronal growth cone-collapsing factor semaphorin3A (Sema3A). On the other hand, increasing evidence shows that DRG axon's regeneration can be stimulated by nerve growth factor (NGF). In this study, we aimed to evaluate whether increased NGF concentrations can counterweight Sema3A-induced inhibitory responses in 15-day-old mouse embryo (E15) DRG axons. The DRG explants were grown in Neurobasal-based medium with different NGF concentrations ranging from 0 to 100 ng/mL and then treated with Sema3A at constant 10 ng/mL concentration. To evaluate interplay between NGF and Sema3A number of DRG axons, axon outgrowth distance and collapse rate were measured. We found that the increased NGF concentrations abolish Sema3A-induced inhibitory effect on axon outgrowth, while they have no effect on Sema3A-induced collapse rate.


Assuntos
Axônios/efeitos dos fármacos , Axônios/fisiologia , Gânglios Espinais/efeitos dos fármacos , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/fisiologia , Fator de Crescimento Neural/farmacologia , Semaforina-3A/farmacologia , Animais , Contagem de Células , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL
18.
Bioelectrochemistry ; 158: 108696, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38583283

RESUMO

RNA interference (RNAi) is a powerful and rapidly developing technology that enables precise silencing of genes of interest. However, the clinical development of RNAi is hampered by the limited cellular uptake and stability of the transferred molecules. Electroporation (EP) is an efficient and versatile technique for the transfer of both RNA and DNA. Although the mechanism of electrotransfer of small nucleic acids has been studied previously, too little is known about the potential effects of significantly larger pDNA on this process. Here we present a fundamental study of the mechanism of electrotransfer of oligonucleotides and siRNA that occur independently and simultaneously with pDNA by employing confocal fluorescence microscopy. In contrast to the conditional understanding of the mechanism, we have shown that the electrotransfer of oligonucleotides and siRNA is driven by both electrophoretic forces and diffusion after EP, followed by subsequent entry into the nucleus within 5 min after treatment. The study also revealed that the efficiency of siRNA electrotransfer decreases in response to an increase in pDNA concentration. Overall, the study provides new insights into the mechanism of electrotransfer of small nucleic acids which may have broader implications for the future application of RNAi-based strategies.


Assuntos
Eletroporação , RNA Interferente Pequeno , Eletroporação/métodos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/química , Oligonucleotídeos/química , Plasmídeos/genética , DNA/genética , DNA/química , Interferência de RNA , Humanos , Microscopia Confocal
19.
Bioelectrochemistry ; 158: 108708, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38636366

RESUMO

Ca2+, in combination with SP or EP, induces cell cytotoxicity much faster compared to BLM. The application of BLM in combination with, SP or EP, reaches the level of cell death, induced by similar combination with Ca2+, only after 72 h. The methods of SP and EP were calibrated according to the level of differential cytotoxicity, determined after 6 days (using cell clonogenic assay). The combination of Ca2+ SP induces cell death faster than Ca2+ EP - after Ca2+ SP it increases to a maximum level after 15 min and remains constant for up to 6 days, while the cytotoxic efficiency after Ca2+ EP increases to the level of Ca2+ SP only after 72 h. The combination of BLM SP shows a very similar dynamics to BLM EP - both reach maximal level of cytotoxicity after 48-72 h. Ca2+ and BLM in combination with SP have shown similar levels of cytotoxicity at higher acoustic pressures (≥250 kPa); therefore, Ca2+ SP can be used to induce immediate and maximal level of cytotoxic effect. The faster cytotoxic efficiency of Ca2+ in combination with SP than EP was determined to be due to the involvement of microbubble inertial cavitation.


Assuntos
Bleomicina , Cálcio , Eletroporação , Cálcio/metabolismo , Eletroporação/métodos , Bleomicina/farmacologia , Humanos , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral
20.
Pharmaceutics ; 15(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37242705

RESUMO

Microbubble (MB)- and ultrasound (US)-facilitated intracellular Ca2+ delivery, known as sonoporation (SP), is a promising anticancer treatment modality, since it allows a spatio-temporally controllable and side-effect-free alternative to conventional chemotherapy. The current study provides extensive evidence that a 5 mM concentration of Ca2+ in combination with US alone or US and Sonovue MBs can be an alternative to the conventional 20 nM concentration of the anticancer drug bleomycin (BLM). Ca2+ application together with SP induces a similar level of death in Chinese hamster ovary cells to the combination of BLM and SP but does not cause systemic toxicity, as is inherent to conventional anticancer drugs. In addition, Ca2+ delivery via SP alters three vital characteristics essential for viable cells: membrane permeability, metabolic activity and proliferation ability. Most importantly, Ca2+ delivery via SP elicits sudden cell death-occurring within 15 min-which remains similar during 24-72 h and 6 d periods. The extensive study of US waves side-scattered by MBs led to the quantification of the cavitation dose (CD) separately for subharmonics, ultraharmonics, harmonics and broadband noise (up to 4 MHz). The CD was suitable for the prognostication of the cytotoxic efficiency of both anticancer agents, Ca2+ and BLM, as was indicated by an overall high (R2 ≥ 0.8) correlation (22 pairs in total). These extensive analytical data imply that a broad range of frequencies are applicable for the feedback-loop control of the process of US-mediated Ca2+ or BLM delivery, successively leading to the eventual standardization of the protocols for the sonotransfer of anticancer agents as well as the establishment of a universal cavitation dosimetry model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA