Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Semin Cell Dev Biol ; 129: 93-102, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35370088

RESUMO

Gamete fusion is of considerable importance in reproductive events, as it determines the gamete pairs or chromosomes that the next generation will inherit. To preserve species specificity with an appropriate karyotype, the fusion between gametes requires regulatory mechanisms to ensure limited fusion competency. In many organisms, gamete surfaces are not smooth, but present constitutive or transient cellular protrusions suggested to be involved in gamete fusion. However, the molecular mechanisms and the factors essential for the membrane-membrane fusion process and cellular protrusion involvement have remained unclear. Recent advances in the identification and functional analysis of the essential factors for gamete interaction have revealed the molecular mechanisms underlying their activity regulation and dynamics. In homogametic fertilization, dynamic regulation of the fusion core machinery on cellular protrusions was precisely uncovered. In heterogametic fertilization, oocyte fusion competency was suggested to correlate with the compartmentalization of the fusion essential factor and protrusion formation. These findings shed light on the significance of cellular protrusions in gamete fusion as a physically and functionally specialized site for cellular fusion. In this review, we consider the developments in gamete interaction research in various species with different fertilization modes, highlighting the commonalities in the relationship between gamete fusion and cellular protrusions.


Assuntos
Fertilização , Interações Espermatozoide-Óvulo , Extensões da Superfície Celular , Células Germinativas , Oócitos , Interações Espermatozoide-Óvulo/fisiologia
2.
Development ; 148(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34269385

RESUMO

Fertilization triggers significant cellular remodeling through the oocyte-to-embryo transition. In this transition, the ubiquitin-proteasome system and autophagy are essential for the degradation of maternal components; however, the significance of degradation of cell surface components remains unknown. In this study, we show that multiple maternal plasma membrane proteins, such as the glycine transporter GlyT1a, are selectively internalized from the plasma membrane to endosomes in mouse embryos by the late two-cell stage and then transported to lysosomes for degradation at the later stages. During this process, large amounts of ubiquitylated proteins accumulated on endosomes. Furthermore, the degradation of GlyT1a with mutations in potential ubiquitylation sites was delayed, suggesting that ubiquitylation may be involved in GlyT1a degradation. The clathrin inhibitor blocked GlyT1a internalization. Strikingly, the protein kinase C (PKC) activator triggered the heterochronic internalization of GlyT1a; the PKC inhibitor markedly blocked GlyT1a endocytosis. Lastly, clathrin inhibition completely blocked embryogenesis at the two-cell stage and inhibited cell division after the four-cell stage. These findings demonstrate that PKC-dependent clathrin-mediated endocytosis is essential for the selective degradation of maternal membrane proteins during oocyte-to-embryo transition and early embryogenesis.


Assuntos
Clatrina/metabolismo , Desenvolvimento Embrionário/fisiologia , Endocitose/fisiologia , Proteínas de Membrana/metabolismo , Animais , Membrana Celular/metabolismo , Embrião de Mamíferos , Endossomos/metabolismo , Feminino , Fertilização , Proteínas da Membrana Plasmática de Transporte de Glicina , Masculino , Camundongos , Oócitos , Proteína Quinase C , Ubiquitina/metabolismo , Ubiquitinação
3.
Biol Reprod ; 111(4): 931-941, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39073915

RESUMO

One of the major causes of oocyte quality deterioration, chromosome segregation abnormalities manifest mainly during meiosis I, which occurs before and during ovulation. However, currently, there is a technical limitation in the introduction of mRNA into premature oocytes without impairing embryonic developmental ability. In this study, we established a low-invasive electroporation (EP) method to introduce mRNA into pre-ovulatory, germinal vesicle (GV) mouse oocytes in an easier manner than the traditional microinjection method. The EP method with an optimized impedance value resulted in the efficient introduction of mRNAs encoding enhanced green fluorescent protein (EGFP) into the GV oocytes surrounded by cumulus cells at a survival rate of 95.0%. Furthermore, the introduction of histone H2B-EGFP mRNA into the GV oocytes labeled most of the oocytes without affecting the blastocyst development rate, indicating the feasibility of the visualization of oocyte chromosomal dynamics that enable us to assay chromosomal integrity in oocyte maturation and cell count in embryonic development. The establishment of this EP method offers extensive assays to select pre-implantation embryos and enables the surveying of essential factors for mammalian oocyte quality determination.


Assuntos
Eletroporação , Oócitos , RNA Mensageiro , Animais , Oócitos/metabolismo , Eletroporação/métodos , Camundongos , RNA Mensageiro/metabolismo , Feminino , Desenvolvimento Embrionário , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
4.
J Cell Sci ; 134(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471926

RESUMO

Infertility afflicts up to 15% of couples globally each year with men a contributing factor in 50% of these cases. Globozoospermia is a rare condition found in infertile men, which is characterized by defective acrosome biogenesis leading to the production of round-headed sperm. Here, we report that family with sequence similarity 209 (Fam209) is required for acrosome biogenesis in mouse sperm. FAM209 is a small transmembrane protein conserved among mammals. Loss of Fam209 results in fertility defects that are secondary to abnormalities in acrosome biogenesis during spermiogenesis, reminiscent of globozoospermia. Analysis of the FAM209 proteome identified DPY19L2, whose human orthologue is involved in the majority of globozoospermia cases. Although mutations in human and mouse Dpy19l2 have been shown to cause globozoospermia, no in vivo interacting partners of DPY19L2 have been identified until now. FAM209 colocalizes with DPY19L2 at the inner nuclear membrane to maintain the developing acrosome. Here, we identified FAM209 as the first interacting partner of DPY19L2, and the second protein that is essential for acrosome biogenesis that localizes to the inner nuclear membrane.


Assuntos
Acrossomo , Infertilidade Masculina , Animais , Fertilidade/genética , Infertilidade Masculina/genética , Masculino , Camundongos , Espermatogênese/genética , Espermatozoides
5.
Int Immunol ; 34(4): 207-223, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-34865040

RESUMO

Anti-dsDNA antibodies are a hallmark of systemic lupus erythematosus and are highly associated with its exacerbation. Cumulative evidence has suggested that somatic hypermutation contributes to the high-affinity reactivity of anti-dsDNA antibodies. Our previous study demonstrated that these antibodies are generated from germline precursors with low-affinity ssDNA reactivity through affinity maturation and clonal expansion in patients with acute lupus. This raised the question of whether such precursors could be subjected to immune tolerance. To address this, we generated a site-directed knock-in (KI) mouse line, G9gl, which carries germline-reverted sequences of the VH-DH-JH and Vκ-Jκ regions of patient-derived, high-affinity anti-dsDNA antibodies. G9gl heterozygous mice had a reduced number of peripheral B cells, only 27% of which expressed G9gl B-cell receptor (BCR). The remaining B cells harbored non-KI allele-derived immunoglobulin heavy (IgH) chains or fusion products of upstream mouse VH and the KI gene, suggesting that receptor editing through VH replacement occurred in a large proportion of B cells in the KI mice. G9gl BCR-expressing B cells responded to ssDNA but not dsDNA, and exhibited several anergic phenotypes, including reduced surface BCR and shortened life span. Furthermore, G9gl B cells were excluded from germinal centers (GCs) induced by several conditions. In particular, following immunization with methylated bovine serum albumin-conjugated bacterial DNA, G9gl B cells occurred at a high frequency in memory B cells but not GC B cells or plasmablasts. Collectively, multiple tolerance checkpoints prevented low-affinity precursors of pathogenic anti-dsDNA B cells from undergoing clonal expansion and affinity maturation in GCs.


Assuntos
Anticorpos Antinucleares , Lúpus Eritematoso Sistêmico , Animais , Linfócitos B , Células Germinativas , Humanos , Tolerância Imunológica/genética , Cadeias Pesadas de Imunoglobulinas/genética , Lúpus Eritematoso Sistêmico/genética , Camundongos , Receptores de Antígenos de Linfócitos B
6.
Reprod Med Biol ; 22(1): e12505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36726596

RESUMO

Background: Oocyte components are maternally provided, solely determine oocyte quality, and coordinately determine embryo quality with zygotic gene expression. During oocyte maturation, maternal organelles are drastically reorganized and specialized to support oocyte characteristics. A large number of maternal components are actively degraded after fertilization and gradually replaced by zygotic gene products. The molecular basis and the significance of these processes on oocyte/embryo quality are not fully understood. Methods: Firstly, recent findings in organelle characteristics of other cells or oocytes from model organisms are introduced for further understanding of oocyte organelle reorganization/specialization. Secondly, recent progress in studies on maternal components degradation and their molecular mechanisms are introduced. Finally, future applications of these advancements for predicting mammalian oocyte/embryo quality are discussed. Main findings: The significance of cellular surface protein degradation via endocytosis for embryonic development, and involvement of biogenesis of lipid droplets in embryonic quality, were recently reported using mammalian model organisms. Conclusion: Identifying key oocyte component characteristics and understanding their dynamics may lead to new applications in oocyte/embryo quality prediction and improvement. To implement these multidimensional concepts, development of new technical approaches that allow us to address the complexity and efficient studies using model organisms are required.

7.
Trends Biochem Sci ; 43(10): 818-828, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30170889

RESUMO

Currently, infertility affects ∼16% of couples worldwide. The causes are reported to involve both male and female factors, including fertilization failure between mature spermatozoa and eggs. However, the molecular mechanisms involved in each step of mammalian fertilization are yet to be fully elucidated. Although some of these steps can be rescued with assisted reproductive technologies, it is important to clarify the molecular mechanisms involved for the treatment and diagnosis of infertile couples. This review illustrates recent findings in mammalian fertilization, discovered by combining gene modification techniques with other new approaches, and aims to show how these findings will guide future research in mammalian fertilization.


Assuntos
Fertilização , Mamíferos/fisiologia , Animais , Proteínas de Transporte/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas do Ovo , Feminino , Humanos , Imunoglobulinas/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Fosfoinositídeo Fosfolipase C/genética , Receptores de Superfície Celular , Especificidade da Espécie , Interações Espermatozoide-Óvulo
8.
Reproduction ; 164(1): F21-F28, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35239501

RESUMO

In 2002, a report suggested that oocyte activation is induced by Plcz1 in mouse oocytes, which prompted great interest in exploring the role of sperm PLCZ1. Thus, PLCZ1 loss-of-function experiments became a crucial tool for addressing this subject. Although the only option to completely delete a target protein in fully functional spermatozoa is to use gene-deficient animals, Plcz1-deficient mice were not reported until 2017. Challenges to obtain suitable in vivo models have been related to altered expression of Capza3, a neighbor gene to Plcz1 locus in mammalian genomes that is required for spermatogenesis. With the advancement of genome-editing technologies, two groups independently and simultaneously produced Plcz1 mutant mouse lines, which were the first animal models to be artificially and reliably deficient for sperm PLCZ1. All Plcz1 mutant mouse lines display normal spermatogenesis and, surprisingly, subfertility rather than complete infertility. Moreover, analysis of oocyte Ca2+ dynamics indicates that mouse PLCζ1 is an essential sperm-derived oocyte activation factor via intracytoplasmic sperm injection, as PLCZ1 deficiency causes a complete lack of Ca2+ oscillations. This seemingly contradictory phenotype can be explained by atypical Ca2+ oscillations that are provoked slowly and less frequently in the case of fertilization accompanied by physiological sperm-egg fusion. These findings not only raise new questions concerning the sperm basic biology, by clearly demonstrating the existence of a PLCZ1-independent oocyte activation mechanism in mice, but also have implications for the treatment and phenotypic interpretation of patients presenting oocyte activation failure.


Assuntos
Cálcio , Fertilização , Animais , Cálcio/metabolismo , Humanos , Masculino , Mamíferos/metabolismo , Camundongos , Oócitos , Fenótipo , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Espermatozoides/metabolismo
9.
Med Mol Morphol ; 55(3): 167-173, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35833996

RESUMO

Fertilization triggers a process called maternal-to-zygotic transition, in which the oocyte undergoes oocyte-to-embryo transition, leading to massive intracellular remodeling toward early embryogenesis. This transition requires the degradation of oocyte-derived components; however, the significance and mechanism of degradation of cell surface components remain unknown. In this review, we focused on the dynamics of plasma membrane proteins and investigated the relationship between embryonic development and endocytosis. Our survey of the extant literature on the topic led to the conclusion that clathrin-mediated endocytosis is essential for the progression of early embryogenesis and selective degradation of oocyte-derived plasma membrane proteins in mouse embryos, as reported by studies analyzing maternal cellular surface proteins, including a glycine transporter, GlyT1a. Evaluation of such endocytic activity in individual embryos may allow the selection of embryos with higher viability in assisted reproductive technologies, and it is important to select viable embryos to increase the rates of successful pregnancy and live birth. Although the early embryonic developmental abnormalities are mainly accompanied with chromosomal aneuploidy, other causes and mechanisms remain unclear. This review summarizes molecular biological approaches to early embryonic developmental abnormalities and their future prospects.


Assuntos
Aneuploidia , Desenvolvimento Embrionário , Animais , Endocitose , Feminino , Proteínas de Membrana/metabolismo , Camundongos , Oócitos/metabolismo , Gravidez
10.
Mol Reprod Dev ; 88(7): 479-481, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34114279

RESUMO

Many factors are involved in acrosome biogenesis in order for appropriate acrosome formation to occur. Here, we demonstrate that IZUMO family member 3, IZUMO3, plays an important role in acrosome biogenesis, as proven by gene disruption experiments. A loss of IZUMO3 in round spermatids affects acrosomal granule positioning due to lack of acrosomal granule contact with the inner acrosomal membrane, leading to the formation of grossly malformed spermatozoa associated with male subfertility. Thus, we suggest that mammalian spermiogenesis needs an elaborate acrosome biogenesis through IZUMO3 involvement.


Assuntos
Acrossomo/fisiologia , Fertilidade/genética , Proteínas de Membrana/fisiologia , Reação Acrossômica/genética , Animais , Infertilidade Masculina/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Espermatogênese/genética , Espermatozoides/anormalidades , Espermatozoides/fisiologia
11.
Biol Reprod ; 102(4): 852-862, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31837139

RESUMO

The t-complex is defined as naturally occurring variants of the proximal third of mouse chromosome 17 and has been studied by mouse geneticists for decades. This region contains many genes involved in processes from embryogenesis to sperm function. One such gene, t-complex protein 11 (Tcp11), was identified as a testis-specific gene whose protein is present in elongating spermatids. Later work on Tcp11 localized TCP11 to the sperm surface and acrosome cap and implicated TCP11 as important for sperm capacitation through the cyclic AMP/Protein Kinase A pathway. Here, we show that TCP11 is cytoplasmically localized to elongating spermatids and absent from sperm. In the absence of Tcp11, male mice have severely reduced fertility due to a significant decrease in progressively motile sperm; however, Tcp11-null sperm continues to undergo tyrosine phosphorylation, a hallmark of capacitation. Interestingly, null sperm displays reduced PKA activity, consistent with previous reports. Our work demonstrates that TCP11 functions in elongated spermatids to confer proper motility in mature sperm.


Assuntos
Proteínas de Membrana/metabolismo , Capacitação Espermática/genética , Motilidade dos Espermatozoides/genética , Espermatozoides/metabolismo , Acrossomo/metabolismo , Animais , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fosforilação , Espermátides/metabolismo , Testículo/metabolismo
12.
Proc Natl Acad Sci U S A ; 113(28): 7704-10, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27357688

RESUMO

Gene-expression analysis studies from Schultz et al. estimate that more than 2,300 genes in the mouse genome are expressed predominantly in the male germ line. As of their 2003 publication [Schultz N, Hamra FK, Garbers DL (2003) Proc Natl Acad Sci USA 100(21):12201-12206], the functions of the majority of these testis-enriched genes during spermatogenesis and fertilization were largely unknown. Since the study by Schultz et al., functional analysis of hundreds of reproductive-tract-enriched genes have been performed, but there remain many testis-enriched genes for which their relevance to reproduction remain unexplored or unreported. Historically, a gene knockout is the "gold standard" to determine whether a gene's function is essential in vivo. Although knockout mice without apparent phenotypes are rarely published, these knockout mouse lines and their phenotypic information need to be shared to prevent redundant experiments. Herein, we used bioinformatic and experimental approaches to uncover mouse testis-enriched genes that are evolutionarily conserved in humans. We then used gene-disruption approaches, including Knockout Mouse Project resources (targeting vectors and mice) and CRISPR/Cas9, to mutate and quickly analyze the fertility of these mutant mice. We discovered that 54 mutant mouse lines were fertile. Thus, despite evolutionary conservation of these genes in vertebrates and in some cases in all eukaryotes, our results indicate that these genes are not individually essential for male mouse fertility. Our phenotypic data are highly relevant in this fiscally tight funding period and postgenomic age when large numbers of genomes are being analyzed for disease association, and will prevent unnecessary expenditures and duplications of effort by others.


Assuntos
Fertilidade/genética , Testículo/metabolismo , Animais , Evolução Biológica , Sistemas CRISPR-Cas , Feminino , Fertilização , Engenharia Genética , Genômica , Masculino , Camundongos , Camundongos Knockout , Espermatogênese
13.
J Cell Sci ; 129(23): 4379-4387, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27802166

RESUMO

Ca2+-binding tyrosine-phosphorylation-regulated protein (CABYR) has been implicated in sperm physiological function in several in vitro studies. It has also been implicated as a potential cause of and diagnostic tool in asthenozoospermic human males. CABYR is known to be localized to the fibrous sheath, an accessory structure in the flagellar principal piece. Utilizing the CRISPR-Cas9 technology, we have knocked out this gene in mice to understand its role in male fertility. Cabyr-knockout male mice showed severe subfertility with a defect in sperm motility as well as a significant disorganization in the fibrous sheath. Further, abnormal configuration of doublet microtubules was observed in the Cabyr-knockout spermatozoa, suggesting that the fibrous sheath is important for the correct organization of the axoneme. Our results show that it is the role of CABYR in the formation of the fibrous sheath that is essential for male fertility.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Fosfoproteínas/metabolismo , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/metabolismo , Animais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Epididimo/metabolismo , Epididimo/ultraestrutura , Feminino , Fertilidade , Deleção de Genes , Células HEK293 , Humanos , Masculino , Camundongos Knockout , Fosforilação , Isoformas de Proteínas/metabolismo , Reprodutibilidade dos Testes , Espermatozoides/ultraestrutura , Especificidade por Substrato , Tirosina/metabolismo
15.
Biol Reprod ; 96(3): 563-575, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28339615

RESUMO

­: During mammalian fertilization, egg Ca 2+ oscillations are known to play pivotal roles in triggering downstream events such as resumption of the cell cycle and the establishment of blocks to polyspermy. However, viable offspring have not been obtained after monitoring Ca 2+ oscillations, and their spatiotemporal links to subsequent events are still to be examined. Therefore, the development of imaging methods to avoid phototoxic damage while labeling these events is required. Here, we examined the usefulness of genetically encoded Ca 2+ indicators for optical imaging (GECOs), in combination with spinning-disk confocal imaging. The Ca 2+ imaging of fertilized mouse eggs with GEM-, G-, or R-GECO recorded successful oscillations (8.19 ± 0.31, 7.56 ± 0.23, or 7.53 ± 0.27 spikes in the first 2 h, respectively), similar to those obtained with chemical indicators. Then, in vitro viability tests revealed that imaging with G- or R-GECO did not interfere with the rate of development to the blastocyst stage (61.8 or 70.0%, respectively, vs 75.0% in control). Furthermore, two-cell transfer to recipient female mice after imaging with G- or R-GECO resulted in a similar birthrate (53.3 or 52.0%, respectively) to that of controls (48.7%). Next, we assessed the quality of the cortical reaction (CR) in artificially activated or fertilized eggs using fluorescently labeled Lens culinaris agglutinin fluorescein isothiocyanate. Multicolor imaging demonstrated that the first few Ca 2+ spikes are sufficient for the completion of the CR and subsequent hardening of the zona pellucida in mouse eggs. These methods provide a framework for studying Ca 2+ dynamics in mammalian fertilization.


Assuntos
Sinalização do Cálcio , Imagem Óptica/métodos , Óvulo/metabolismo , Animais , Feminino , Marcadores Genéticos , Masculino , Camundongos , Camundongos Knockout
16.
Reproduction ; 152(6): 665-672, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27624483

RESUMO

IZUMO1 is a protein found in the head of spermatozoa that has been identified as essential for sperm-egg fusion. Its binding partner in the egg has been discovered (JUNO); however, the roles of several domains within IZUMO1 remain unexplored. One such domain is the C-terminus, which undergoes major phosphorylation changes in the cytoplasmic portion of the protein during rat epididymal transit. However, the cytoplasmic tail of IZUMO1 in many species is highly variable, ranging from 55 to one amino acid. Therefore, to understand the role of the cytoplasmic tail of IZUMO1 in mouse, we utilised the gene manipulation system of CRISPR/Cas9 to generate a point mutation resulting in a premature stop codon, producing mice with truncated IZUMO1. Mice without the cytoplasmic tail of IZUMO1 showed normal fertility but decreased the amount of protein, indicating that whilst this region is important for the expression level of IZUMO1, it is dispensable for fertilisation in the mouse.


Assuntos
Sistemas CRISPR-Cas , Fertilidade/genética , Imunoglobulinas/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Sequência de Aminoácidos , Animais , Citoplasma/metabolismo , Fertilização/fisiologia , Imunoglobulinas/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Fosforilação , Domínios Proteicos , Interações Espermatozoide-Óvulo , Espermatozoides/metabolismo
17.
Development ; 139(19): 3583-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22949614

RESUMO

SPACA1 is a membrane protein that localizes in the equatorial segment of spermatozoa in mammals and is reported to function in sperm-egg fusion. We produced a Spaca1 gene-disrupted mouse line and found that the male mice were infertile. The cause of this sterility was abnormal shaping of the sperm head reminiscent of globozoospermia in humans. Disruption of Spaca1 led to the disappearance of the nuclear plate, a dense lining of the nuclear envelope facing the inner acrosomal membrane. This coincided with the failure of acrosomal expansion during spermiogenesis and resulted in the degeneration and disappearance of the acrosome in mature spermatozoa. Thus, these findings clarify part of the cascade leading to globozoospermia.


Assuntos
Infertilidade Masculina/genética , Isoantígenos/genética , Proteínas de Plasma Seminal/genética , Cabeça do Espermatozoide/patologia , Espermatozoides/anormalidades , Acrossomo/metabolismo , Acrossomo/fisiologia , Animais , Forma Celular/genética , Expressão Gênica , Infertilidade Masculina/patologia , Isoantígenos/metabolismo , Isoantígenos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Proteínas de Plasma Seminal/metabolismo , Proteínas de Plasma Seminal/fisiologia , Espermatogênese/genética , Espermatogênese/fisiologia , Espermatozoides/ultraestrutura , Distribuição Tecidual
18.
Biol Reprod ; 93(4): 94, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26377222

RESUMO

To begin embryonic development, the zygote must resume the cell cycle correctly after stimulation by sperm-borne oocyte-activating factors (SOAFs). The postacrosomal WW domain-binding protein (PAWP) is one of the strongest SOAF candidates and is widely conserved among eutherian mammals. It has been reported that the microinjection of recombinant PAWP protein can trigger not only Ca(2+) oscillations in mammalian eggs but also intracellular Ca(2+) release in amphibian eggs. It was also suggested that PAWP is involved in the formation of high-quality spermatozoa. On the other hand, negligible SOAF activity for PAWP cRNA has also been reported. In this study, we generated PAWP null mice and examined the fertilizing ability of male mice. Electron microscopy showed no aberrant morphology in spermatogenesis. Intracytoplasmic injection of a single spermatozoon from the null mouse line showed that depletion of PAWP elicited no quantitative differences in Ca(2+) oscillations or in subsequent development of the embryos. We conclude that PAWP does not play an essential role in mouse fertilization.


Assuntos
Acrossomo/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Óvulo/fisiologia , Proteínas de Plasma Seminal/genética , Proteínas de Plasma Seminal/fisiologia , Espermatozoides/metabolismo , Animais , Sinalização do Cálcio/genética , Feminino , Fertilização , Masculino , Meiose/efeitos dos fármacos , Camundongos , Camundongos Knockout , Oócitos/metabolismo , Gravidez , Injeções de Esperma Intracitoplásmicas , Espermatogênese
19.
Int J Mol Sci ; 16(10): 24732-50, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26501274

RESUMO

Spermatozoa are flagellated cells whose role in fertilization is dependent on their ability to move towards an oocyte. The structure of the sperm flagella is highly conserved across species, and much of what is known about this structure is derived from studies utilizing animal models. One group of proteins essential for the movement of the flagella are the dyneins. Using the advanced technology of CRISPR/Cas9 we have targeted three dynein group members; Dnaic1, Wdr63 and Ccdc63 in mice. All three of these genes are expressed strongly in the testis. We generated mice with amino acid substitutions in Dnaic1 to analyze two specific phosphorylation events at S124 and S127, and generated simple knockouts of Wdr63 and Ccdc63. We found that the targeted phosphorylation sites in Dnaic1 were not essential for male fertility. Similarly, Wdr63 was not essential for male fertility; however, Ccdc63 removal resulted in sterile male mice due to shortened flagella. This study demonstrates the versatility of the CRISPR/Cas9 system to generate animal models of a highly complex system by introducing point mutations and simple knockouts in a fast and efficient manner.


Assuntos
Sistemas CRISPR-Cas/genética , Espermatogênese/fisiologia , Animais , Masculino , Camundongos , Motilidade dos Espermatozoides/genética , Motilidade dos Espermatozoides/fisiologia , Espermatogênese/genética
20.
J Cell Sci ; 125(Pt 21): 4985-90, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22946049

RESUMO

Gene disruption experiments have proven that the acrosomal protein IZUMO1 is essential for sperm-egg fusion in the mouse. However, despite its predicted function, it is not expressed on the surface of ejaculated spermatozoa. Here, we report the dynamics of diffusion of IZUMO1 from the acrosomal membrane to the sperm surface at the time of the acrosome reaction, visualized using a fluorescent protein tag. IZUMO1 showed a tendency to localize in the equatorial segment of the sperm surface after the acrosome reaction. This region is considered to initiate fusion with the oolemma. The moment of sperm-egg fusion and the dynamic movements of proteins during fusion were also imaged live. Translocation of IZUMO1 during the fertilization process was clarified, and a fundamental mechanism in mammalian fertilization is postulated.


Assuntos
Reação Acrossômica , Acrossomo/metabolismo , Imunoglobulinas/metabolismo , Proteínas de Membrana/metabolismo , Animais , Membrana Celular/metabolismo , Feminino , Fertilização , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Espermatozoides/metabolismo , Imagem com Lapso de Tempo , Zona Pelúcida/metabolismo , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA