Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanomedicine ; 11(1): 39-46, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25072378

RESUMO

Blood clots when it contacts foreign surfaces following platelet activation. This can be catastrophic in clinical settings involving extracorporeal circulation such as during heart-lung bypass where blood is circulated in polyvinyl chloride tubing. Studies have shown, however, that surface-bound carbon nanotubes may prevent platelet activation, the initiator of thrombosis. We studied the blood biocompatibility of polyvinyl chloride, surface-modified with multi-walled carbon nanotubes in vitro and in vivo. Our results show that surface-bound multi-walled carbon nanotubes cause platelet activation in vitro and devastating thrombosis in an in vivo animal model of extracorporeal circulation. The mechanism of the pro-thrombotic effect likely involves direct multi-walled carbon nanotube-platelet interaction with Ca(2+)-dependant platelet activation. These experiments provide evidence, for the first time, that modification of surfaces with nanomaterials modulates blood biocompatibility in extracorporeal circulation.


Assuntos
Materiais Biocompatíveis/química , Nanomedicina/métodos , Nanotubos de Carbono/química , Animais , Coagulação Sanguínea , Plaquetas/efeitos dos fármacos , Cálcio/química , Ponte Cardiopulmonar , Humanos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Perfusão , Ativação Plaquetária , Cloreto de Polivinila/química , Proteômica , Coelhos , Propriedades de Superfície , Trombose/metabolismo
2.
J Nanobiotechnology ; 11: 1, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23343139

RESUMO

BACKGROUND: Aerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe3O4 magnetic nanoparticles (MNPs) with a polymer poly(lactic-co-glycolic acid) (PLGA). The polymeric shell of these engineered nanoparticles was loaded with a potential anti-cancer drug quercetin and their suitability for targeting lung cancer cells via nebulization was evaluated. RESULTS: Average particle size of the developed MNPs and PLGA-MNPs as measured by electron microscopy was 9.6 and 53.2 nm, whereas their hydrodynamic swelling as determined using dynamic light scattering was 54.3 nm and 293.4 nm respectively. Utilizing a series of standardized biological tests incorporating a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we confirmed that the developed MNP-based nanocarrier system was biocompatible, as no cytotoxicity was observed when up to 100 µg/ml PLGA-MNP was applied to the cultured human lung epithelial cells. Moreover, the PLGA-MNP preparation was well-tolerated in vivo in mice when applied intranasally as measured by glutathione and IL-6 secretion assays after 1, 4, or 7 days post-treatment. To imitate aerosol formation for drug delivery to the lungs, we applied quercitin loaded PLGA-MNPs to the human lung carcinoma cell line A549 following a single round of nebulization. The drug-loaded PLGA-MNPs significantly reduced the number of viable A549 cells, which was comparable when applied either by nebulization or by direct pipetting. CONCLUSION: We have developed a magnetic core-shell nanoparticle-based nanocarrier system and evaluated the feasibility of its drug delivery capability via aerosol administration. This study has implications for targeted delivery of therapeutics and poorly soluble medicinal compounds via inhalation route.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Magnetismo , Nanopartículas/química , Quercetina/farmacologia , Aerossóis , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Feminino , Glutationa/análise , Humanos , Interleucina-6/análise , Ácido Láctico/química , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química
3.
J Am Chem Soc ; 134(45): 18758-71, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23101481

RESUMO

The covalent chemical functionalization of exfoliated hexagonal boron-nitride nanosheets (BNNSs) is achieved by the solution-phase oxygen radical functionalization of boron atoms in the h-BN lattice. This involves a two-step procedure to initially covalently graft alkoxy groups to boron atoms and the subsequent hydrolytic defunctionalization of the groups to yield hydroxyl-functionalized BNNSs (OH-BNNSs). Characterization of the functionalized-BNNSs using HR-TEM, Raman, UV-vis, FTIR, NMR, and TGA was performed to investigate both the structure of the BNNSs and the covalent functionalization methodology. OH-BNNSs were used to prepare polymer nanocomposites and their mechanical properties analyzed. The influence of the functional groups grafted to the surface of the BNNSs is investigated by demonstrating the impact on mechanical properties of both noncovalent and covalent bonding at the interface between the nanofiller and polymer matrixes.

4.
Chemistry ; 18(35): 10808-12, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-22807159

RESUMO

The covalent functionalization of exfoliated hexagonal boron nitride (h-BN) nanosheets by nitrene addition is described. Integration of functionalized h-BN nanosheets within a polycarbonate matrix is demonstrated and was found to afford significant increases in mechanical properties. This integration methodology was further extended by the covalent modification of the h-BN nanosheets with polymer chains of a polycarbonate analogue, and the integration of the polymer modified h-BN within the polymer matrix.

5.
Nanomaterials (Basel) ; 10(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076455

RESUMO

Previous studies have demonstrated that the mesoporosity of carbon material obtained by the Starbon® process from starch-formed by amylose and amylopectin can be tuned by controlling this ratio (the higher the amylose, the higher the mesoporosity). This study shows that starch type can also be an important parameter to control this mesoporosity. Carbons with controlled mesoporosity (Vmeso from 0.1-0.7 cm3/g) have been produced by the pre-mixing of different starches using an ionic liquid (IL) followed by a modified Starbon® process. The results show that the use of starch from corn and maize (commercially available Hylon VII with maize, respectively) is the better combination to increase the mesopore volume. Moreover, "low-cost" mesoporous carbons have been obtained by the direct carbonization of the pre-treated starch mixtures with the IL. In all cases, the IL can be recovered and reused, as demonstrated by its recycling up to three times. Furthermore, and as a comparison, chitosan has been also used as a precursor to obtain N-doped mesoporous carbons (5.5 wt% N) with moderate mesoporosity (Vmeso = 0.43 cm3/g). The different mesoporous carbons have been tested as cathode components in Li-O2 batteries and it is shown that a higher carbon mesoporosity, produced from starch precursor, or the N-doping, produced from chitosan precursor, increase the final battery cell performance (specific capacity and cycling).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA