Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Biochem J ; 479(17): 1785-1806, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35916484

RESUMO

Sialidases are glycosyl hydrolase enzymes targeting the glycosidic bond between terminal sialic acids and underlying sugars. The NanH sialidase of Tannerella forsythia, one of the bacteria associated with severe periodontal disease plays a role in virulence. Here, we show that this broad-specificity enzyme (but higher affinity for α2,3 over α2,6 linked sialic acids) digests complex glycans but not those containing Neu5,9Ac. Furthermore, we show it to be a highly stable dimeric enzyme and present a thorough structural analysis of the native enzyme in its apo-form and in complex with a sialic acid analogue/ inhibitor (Oseltamivir). We also use non-catalytic (D237A) variant to characterise molecular interactions while in complex with the natural substrates 3- and 6-siallylactose. This dataset also reveals the NanH carbohydrate-binding module (CBM, CAZy CBM 93) has a novel fold made of antiparallel beta-strands. The catalytic domain structure contains novel features that include a non-prolyl cis-peptide and an uncommon arginine sidechain rotamer (R306) proximal to the active site. Via a mutagenesis programme, we identified key active site residues (D237, R212 and Y518) and probed the effects of mutation of residues in proximity to the glycosidic linkage within 2,3 and 2,6-linked substrates. These data revealed that mutagenesis of R306 and residues S235 and V236 adjacent to the acid-base catalyst D237 influence the linkage specificity preference of this bacterial sialidase, opening up possibilities for enzyme engineering for glycotechology applications and providing key structural information that for in silico design of specific inhibitors of this enzyme for the treatment of periodontitis.


Assuntos
Neuraminidase , Tannerella forsythia , Domínio Catalítico , Ácido N-Acetilneuramínico , Neuraminidase/metabolismo , Ácidos Siálicos , Especificidade por Substrato
2.
Microbiology (Reading) ; 165(11): 1181-1197, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31517596

RESUMO

Key to onset and progression of periodontitis is a complex relationship between oral bacteria and the host. The organisms most associated with severe periodontitis are the periodontal pathogens of the red complex: Tannerella forsythia, Treponema denticola and Porphyromonas gingivalis. These organisms express sialidases, which cleave sialic acid from host glycoproteins, and contribute to disease through various mechanisms. Here, we expressed and purified recombinant P. gingivalis sialidase SiaPG (PG_0352) and characterized its activity on a number of substrates, including host sialoglycoproteins and highlighting the inability to cleave diacetylated sialic acids - a phenomenon overcome by the NanS sialate-esterase from T. forsythia. Indeed SiaPG required NanS to maximize sialic acid harvesting from heavily O-acetylated substrates such as bovine salivary mucin, hinting at the possibility of interspecies cooperation in sialic acid release from host sources by these members of the oral microbiota. Activity of SiaPG and P. gingivalis was inhibited using the commercially available chemotherapeutic zanamivir, indicating its potential as a virulence inhibitor, which also inhibited sialic acid release from mucin, and was capable of inhibiting biofilm formation of P. gingivalis on oral glycoprotein sources. Zanamivir also inhibited attachment and invasion of oral epithelial cells by P. gingivalis and other periodontal pathogens, both in monospecies but also in multispecies infection experiments, indicating potential to suppress host-pathogen interactions of a mixed microbial community. This study broadens our understanding of the multifarious roles of bacterial sialidases in virulence, and indicates that their inhibition with chemotherapeutics could be a promising strategy for periodontitis therapy.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Neuraminidase/metabolismo , Porphyromonas gingivalis/enzimologia , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Linhagem Celular , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Interações Microbianas , Mucinas/metabolismo , Mutação , Neuraminidase/genética , Polissacarídeos/metabolismo , Porphyromonas gingivalis/efeitos dos fármacos , Porphyromonas gingivalis/crescimento & desenvolvimento , Porphyromonas gingivalis/patogenicidade , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sialoglicoproteínas/metabolismo , Tannerella forsythia/enzimologia , Fatores de Virulência/genética , Zanamivir/farmacologia
3.
Biochem J ; 475(6): 1159-1176, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483296

RESUMO

Bacterial sialidases cleave terminal sialic acid from a variety of host glycoproteins, and contribute to survival and growth of many human-dwelling bacterial species, including various pathogens. Tannerella forsythia, an oral, Gram-negative, fastidious anaerobe, is a key organism in periodontal disease and possesses a dedicated sialic acid utilisation and scavenging (nan) operon, including NanH sialidase. Here, we describe biochemical characterisation of recombinant NanH, including its action on host-relevant sialoglycans such as sialyl Lewis A and sialyl Lewis X (SLeA/X), and on human cell-attached sialic acids directly, uncovering that it is a highly active broad specificity sialidase. Furthermore, the N-terminal domain of NanH was hypothesised and proved to be capable of binding to a range of sialoglycans and non-sialylated derivatives with Kd in the micromolar range, as determined by steady-state tryptophan fluorescence spectroscopy, but it has no catalytic activity in isolation from the active site. We consider this domain to represent the founding member of a novel subfamily of carbohydrate-binding module (CBM), involved in glycosidase-ligand binding. In addition, we created a catalytically inactive version of the NanH enzyme (FRIP → YMAP) that retained its ability to bind sialic acid-containing ligands and revealed for the first time that binding activity of a CBM is enhanced by association with the catalytic domain. Finally, we investigated the importance of Lewis-type sialoglycans on T. forsythia-host interactions, showing that nanomolar amounts of SLeA/X were capable of reducing invasion of oral epithelial cells by T. forsythia, suggesting that these are key ligands for bacterial-cellular interactions during periodontal disease.


Assuntos
Metabolismo dos Carboidratos , Interações Hospedeiro-Patógeno , Neuraminidase/química , Neuraminidase/metabolismo , Domínios e Motivos de Interação entre Proteínas , Tannerella forsythia/enzimologia , Sítios de Ligação , Metabolismo dos Carboidratos/genética , Domínio Catalítico , Interações Hospedeiro-Patógeno/genética , Humanos , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/genética , Domínios e Motivos de Interação entre Proteínas/genética , Ácidos Siálicos/metabolismo , Especificidade por Substrato , Tannerella forsythia/genética , Tannerella forsythia/metabolismo , Tannerella forsythia/patogenicidade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA