Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 22(11): 1440-1451, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34686860

RESUMO

Intestinal epithelial cell (IEC) damage by T cells contributes to graft-versus-host disease, inflammatory bowel disease and immune checkpoint blockade-mediated colitis. But little is known about the target cell-intrinsic features that affect disease severity. Here we identified disruption of oxidative phosphorylation and an increase in succinate levels in the IECs from several distinct in vivo models of T cell-mediated colitis. Metabolic flux studies, complemented by imaging and protein analyses, identified disruption of IEC-intrinsic succinate dehydrogenase A (SDHA), a component of mitochondrial complex II, in causing these metabolic alterations. The relevance of IEC-intrinsic SDHA in mediating disease severity was confirmed by complementary chemical and genetic experimental approaches and validated in human clinical samples. These data identify a critical role for the alteration of the IEC-specific mitochondrial complex II component SDHA in the regulation of the severity of T cell-mediated intestinal diseases.


Assuntos
Colite/enzimologia , Colo/enzimologia , Citotoxicidade Imunológica , Complexo II de Transporte de Elétrons/metabolismo , Células Epiteliais/enzimologia , Doença Enxerto-Hospedeiro/enzimologia , Mucosa Intestinal/enzimologia , Mitocôndrias/enzimologia , Linfócitos T/imunologia , Animais , Estudos de Casos e Controles , Comunicação Celular , Células Cultivadas , Colite/genética , Colite/imunologia , Colite/patologia , Colo/imunologia , Colo/ultraestrutura , Modelos Animais de Doenças , Complexo II de Transporte de Elétrons/genética , Células Epiteliais/imunologia , Células Epiteliais/ultraestrutura , Feminino , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Humanos , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Mucosa Intestinal/ultraestrutura , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/imunologia , Mitocôndrias/ultraestrutura , Fosforilação Oxidativa , Ácido Succínico/metabolismo , Linfócitos T/metabolismo
2.
Stem Cells ; 42(1): 13-28, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37931173

RESUMO

Insight into the molecular mechanisms governing the development and maintenance of pluripotency is important for understanding early development and the use of stem cells in regenerative medicine. We demonstrate the selective inhibition of mTORC1 signaling is important for developing the inner cell mass (ICM) and the self-renewal of human embryonic stem cells. S6K suppressed the expression and function of pluripotency-related transcription factors (PTFs) OCT4, SOX2, and KLF4 through phosphorylation and ubiquitin proteasome-mediated protein degradation, indicating that S6K inhibition is required for pluripotency. PTFs inhibited mTOR signaling. The phosphorylation of S6 was decreased in PTF-positive cells of the ICM in embryos. Activation of mTORC1 signaling blocked ICM formation and the selective inhibition of S6K by rapamycin increased the ICM size in mouse blastocysts. Thus, selective inhibition of mTORC1 signaling supports the development and maintenance of pluripotency.


Assuntos
Blastocisto , Transdução de Sinais , Humanos , Animais , Camundongos , Sirolimo/farmacologia , Fosforilação , Alvo Mecanístico do Complexo 1 de Rapamicina
3.
J Neurosci ; 43(10): 1692-1713, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36717230

RESUMO

The brain µ-opioid receptor (MOR) is critical for the analgesic, rewarding, and addictive effects of opioid drugs. However, in rat models of opioid-related behaviors, the circuit mechanisms of MOR-expressing cells are less known because of a lack of genetic tools to selectively manipulate them. We introduce a CRISPR-based Oprm1-Cre knock-in transgenic rat that provides cell type-specific genetic access to MOR-expressing cells. After performing anatomic and behavioral validation experiments, we used the Oprm1-Cre knock-in rats to study the involvement of NAc MOR-expressing cells in heroin self-administration in male and female rats. Using RNAscope, autoradiography, and FISH chain reaction (HCR-FISH), we found no differences in Oprm1 expression in NAc, dorsal striatum, and dorsal hippocampus, or MOR receptor density (except dorsal striatum) or function between Oprm1-Cre knock-in rats and wildtype littermates. HCR-FISH assay showed that iCre is highly coexpressed with Oprm1 (95%-98%). There were no genotype differences in pain responses, morphine analgesia and tolerance, heroin self-administration, and relapse-related behaviors. We used the Cre-dependent vector AAV1-EF1a-Flex-taCasp3-TEVP to lesion NAc MOR-expressing cells. We found that the lesions decreased acquisition of heroin self-administration in male Oprm1-Cre rats and had a stronger inhibitory effect on the effort to self-administer heroin in female Oprm1-Cre rats. The validation of an Oprm1-Cre knock-in rat enables new strategies for understanding the role of MOR-expressing cells in rat models of opioid addiction, pain-related behaviors, and other opioid-mediated functions. Our initial mechanistic study indicates that lesioning NAc MOR-expressing cells had different effects on heroin self-administration in male and female rats.SIGNIFICANCE STATEMENT The brain µ-opioid receptor (MOR) is critical for the analgesic, rewarding, and addictive effects of opioid drugs. However, in rat models of opioid-related behaviors, the circuit mechanisms of MOR-expressing cells are less known because of a lack of genetic tools to selectively manipulate them. We introduce a CRISPR-based Oprm1-Cre knock-in transgenic rat that provides cell type-specific genetic access to brain MOR-expressing cells. After performing anatomical and behavioral validation experiments, we used the Oprm1-Cre knock-in rats to show that lesioning NAc MOR-expressing cells had different effects on heroin self-administration in males and females. The new Oprm1-Cre rats can be used to study the role of brain MOR-expressing cells in animal models of opioid addiction, pain-related behaviors, and other opioid-mediated functions.


Assuntos
Dependência de Heroína , Heroína , Ratos , Masculino , Feminino , Animais , Heroína/farmacologia , Analgésicos Opioides/farmacologia , Núcleo Accumbens , Receptores Opioides/metabolismo , Ratos Transgênicos , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Dor/metabolismo
4.
Anal Chem ; 96(19): 7348-7352, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696329

RESUMO

Current commercially available liquid chromatography coupled to isotope ratio mass spectrometry systems (LC-IRMS) oxidize all eluent and thus can only operate with all-aqueous mobile phases, limiting their application to a small subset of analytes and mixtures that can be separated without organic solvents. We report a novel rotating-catalytic disc desolvation device with subsequent laser-activated photocatalytic analyte combustion to create CO2 for high precision carbon isotope ratio measurements compatible with both aqueous and organic liquid mobile phases. Sucrose, glucose, androsterone, or androsterone acetate in 20% and 50% H2O-CH3OH solutions were introduced by flow injection to the interface to IRMS for sugars and steroids, respectively. Sucrose δ13CVPDB linearity was excellent over 1-10 µg (33-655 nmol C) injections, using IRMS compatible He/1%O2 oxidation gas. The limit of precise isotope analysis (LOIA) of δ13CVPDB was 1 µg (35 nmol C) for sucrose and 10 µg (655 nmol C) for androsterone with average precisions of SD(δ13C) ± 0.8‰. Calibration was performed with and bracketed the δ13CVPDB isotope ratio range using androsterone-acetate and glucose. With further development to improve sensitivity and application to chromatography, the prototype proof-of-principle LC-IRMS shows promise to resolve a major drawback in current LC-IRMS systems and may open LC-IRMS to many more compounds than currently possible.

5.
Muscle Nerve ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922958

RESUMO

INTRODUCTION/AIMS: The precise relationship between molecular mimicry and tissue-specific autoimmunity is unknown. Major histocompatibility complex (MHC) class II antigen presenting cell-CD4+ T-cell receptor complex interactions are necessary for adaptive immunity. This study aimed to determine the role of endoneurial endothelial cell MHC class II in autoimmune polyneuropathy. METHODS: Cryopreserved Guillain-Barré syndrome (GBS) patient sural nerve biopsies and sciatic nerves from the severe murine experimental autoimmune neuritis (sm-EAN) GBS model were studied. Cultured conditional ready MHC Class II antigen A-alpha chain (H2-Aa) embryonic stem cells were used to generate H2-Aaflox/+ C57BL/6 mice. Mice were backcrossed and intercrossed to the SJL background to generate H2-Aaflox/flox SJL mice, bred with hemizygous Tamoxifen-inducible von Willebrand factor Cre recombinase (vWF-iCre/+) SJL mice to generate H2-Aaflox/flox; vWF-iCre/+ mice to study microvascular endothelial cell adaptive immune responses. Sm-EAN was induced in Tamoxifen-treated H2-Aaflox/flox; vWF-iCre/+, H2-Aaflox/flox; +/+, H2-Aa+/+; vWF-iCre/+ and untreated H2-Aaflox/flox; vWF-iCre/+ adult female SJL mice. Neurobehavioral, electrophysiological and histopathological assessments were performed at predefined time points. RESULTS: Endoneurial endothelial cell MHC class II expression was observed in normal and inflamed human and mouse peripheral nerves. Tamoxifen-treated H2-Aaflox/flox; vWF-iCre/+ mice were resistant to sm-EAN despite extensive MHC class II expression in lymphoid and non-lymphoid tissues. DISCUSSION: A conditional MHC class II knockout mouse to study cell- and time-dependent adaptive immune responses in vivo was developed. Initial studies show microvascular endothelial cell MHC class II expression is necessary for peripheral nerve specific autoimmunity, as advocated by human in vitro adaptive immunity and ex vivo transplant rejection studies.

6.
Nature ; 563(7730): 254-258, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30401834

RESUMO

Skeletal stem cells regulate bone growth and homeostasis by generating diverse cell types, including chondrocytes, osteoblasts and marrow stromal cells. The emerging concept postulates that there exists a distinct type of skeletal stem cell that is closely associated with the growth plate1-4, which is a type of cartilaginous tissue that has critical roles in bone elongation5. The resting zone maintains the growth plate by expressing parathyroid hormone-related protein (PTHrP), which interacts with Indian hedgehog (Ihh) that is released from the hypertrophic zone6-10, and provides a source of other chondrocytes11. However, the identity of skeletal stem cells and how they are maintained in the growth plate are unknown. Here we show, in a mouse model, that skeletal stem cells are formed among PTHrP-positive chondrocytes within the resting zone of the postnatal growth plate. PTHrP-positive chondrocytes expressed a panel of markers for skeletal stem and progenitor cells, and uniquely possessed the properties of skeletal stem cells in cultured conditions. Cell-lineage analysis revealed that PTHrP-positive chondrocytes in the resting zone continued to form columnar chondrocytes in the long term; these chondrocytes underwent hypertrophy, and became osteoblasts and marrow stromal cells beneath the growth plate. Transit-amplifying chondrocytes in the proliferating zone-which was concertedly maintained by a forward signal from undifferentiated cells (PTHrP) and a reverse signal from hypertrophic cells (Ihh)-provided instructive cues to maintain the cell fates of PTHrP-positive chondrocytes in the resting zone. Our findings unravel a type of somatic stem cell that is initially unipotent and acquires multipotency at the post-mitotic stage, underscoring the malleable nature of the skeletal cell lineage. This system provides a model in which functionally dedicated stem cells and their niches are specified postnatally, and maintained throughout tissue growth by a tight feedback regulation system.


Assuntos
Lâmina de Crescimento/citologia , Células-Tronco/citologia , Animais , Linhagem da Célula , Condrócitos/citologia , Condrócitos/metabolismo , Lâmina de Crescimento/metabolismo , Técnicas In Vitro , Camundongos , Osteoblastos/citologia , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Nicho de Células-Tronco , Células-Tronco/metabolismo , Células Estromais/citologia
7.
Am Nat ; 202(4): E104-E120, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792913

RESUMO

AbstractMany animals lay their eggs in clusters. Eggs on the periphery of clusters can be at higher risk of mortality. We asked whether the most commonly occurring clutch sizes in pentatomid bugs could result from geometrical arrangements that maximize the proportion of eggs in the cluster's interior. Although the most common clutch sizes do not correspond with geometric optimality, stink bugs do tend to lay clusters of eggs in shapes that protect increasing proportions of their offspring as clutch sizes increase. We also considered whether ovariole number, an aspect of reproductive anatomy that may be a fixed trait across many pentatomids, could explain observed distributions of clutch sizes. The most common clutch sizes across many species correspond with multiples of ovariole number. However, there are species with the same number of ovarioles that lay clutches of widely varying size, among which multiples of ovariole number are not overrepresented. In pentatomid bugs, reproductive anatomy appears to be more important than egg mass geometry in determining clutch size uniformity. In addition, our analysis demonstrates that groups of animals with little variation in ovariole number may nonetheless lay a broad range of clutch shapes and sizes.


Assuntos
Tamanho da Ninhada , Animais , Fenótipo
8.
Biophys J ; 121(5): 692-704, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131294

RESUMO

Pulsatile insulin secretion by pancreatic beta cells is necessary for tight glucose control in the body. Glycolytic oscillations have been proposed as the mechanism for generating the electrical oscillations underlying pulsatile insulin secretion. The glycolytic enzyme 6-phosphofructokinase-1 (PFK) synthesizes fructose-1,6-bisphosphate (FBP) from fructose-6-phosphate. It has been proposed that the slow electrical and Ca2+ oscillations (periods of 3-5 min) observed in islets result from allosteric feedback activation of PFKM by FBP. Pancreatic beta cells express three PFK isozymes: PFKL, PFKM, and PFKP. A prior study of mice that were engineered to lack PFKM using a gene-trap strategy to delete Pfkm produced a mosaic reduction in global Pfkm expression, but the islets isolated from the mice still exhibited slow Ca2+ oscillations. However, these islets still expressed residual PFKM protein. Thus, to more fully test the hypothesis that beta cell PFKM is responsible for slow islet oscillations, we made a beta-cell-specific knockout mouse that completely lacked PFKM. While PFKM deletion resulted in subtle metabolic changes in vivo, islets that were isolated from these mice continued to exhibit slow oscillations in electrical activity, beta cell Ca2+ concentrations, and glycolysis, as measured using PKAR, an FBP reporter/biosensor. Furthermore, simulations obtained with a mathematical model of beta cell activity shows that slow oscillations can persist despite PFKM loss provided that one of the other PFK isoforms, such as PFKP, is present, even if its level of expression is unchanged. Thus, while we believe that PFKM may be the main regulator of slow oscillations in wild-type islets, PFKP can provide functional redundancy. Our model also suggests that PFKM likely dominates, in vivo, because it outcompetes PFKP with its higher FBP affinity and lower ATP affinity. We thus propose that isoform redundancy may rescue key physiological processes of the beta cell in the absence of certain critical genes.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Fosfofrutoquinase-1 , Animais , Cálcio/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Camundongos , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo
9.
J Neurosci ; 40(15): 2976-2992, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32152201

RESUMO

Hepatocyte growth factor (HGF) is a multifunctional protein that signals through the MET receptor. HGF stimulates cell proliferation, cell dispersion, neuronal survival, and wound healing. In the inner ear, levels of HGF must be fine-tuned for normal hearing. In mice, a deficiency of HGF expression limited to the auditory system, or an overexpression of HGF, causes neurosensory deafness. In humans, noncoding variants in HGF are associated with nonsyndromic deafness DFNB39 However, the mechanism by which these noncoding variants causes deafness was unknown. Here, we reveal the cause of this deafness using a mouse model engineered with a noncoding intronic 10 bp deletion (del10) in Hgf Male and female mice homozygous for del10 exhibit moderate-to-profound hearing loss at 4 weeks of age as measured by tone burst auditory brainstem responses. The wild type (WT) 80 mV endocochlear potential was significantly reduced in homozygous del10 mice compared with WT littermates. In normal cochlea, endocochlear potentials are dependent on ion homeostasis mediated by the stria vascularis (SV). Previous studies showed that developmental incorporation of neural crest cells into the SV depends on signaling from HGF/MET. We show by immunohistochemistry that, in del10 homozygotes, neural crest cells fail to infiltrate the developing SV intermediate layer. Phenotyping and RNAseq analyses reveal no other significant abnormalities in other tissues. We conclude that, in the inner ear, the noncoding del10 mutation in Hgf leads to developmental defects of the SV and consequently dysfunctional ion homeostasis and a reduction in the EP, recapitulating human DFNB39 nonsyndromic deafness.SIGNIFICANCE STATEMENT Hereditary deafness is a common, clinically and genetically heterogeneous neurosensory disorder. Previously, we reported that human deafness DFNB39 is associated with noncoding variants in the 3'UTR of a short isoform of HGF encoding hepatocyte growth factor. For normal hearing, HGF levels must be fine-tuned as an excess or deficiency of HGF cause deafness in mouse. Using a Hgf mutant mouse with a small 10 bp deletion recapitulating a human DFNB39 noncoding variant, we demonstrate that neural crest cells fail to migrate into the stria vascularis intermediate layer, resulting in a significantly reduced endocochlear potential, the driving force for sound transduction by inner ear hair cells. HGF-associated deafness is a neurocristopathy but, unlike many other neurocristopathies, it is not syndromic.


Assuntos
Cóclea/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Perda Auditiva Neurossensorial/genética , Fator de Crescimento de Hepatócito/genética , Crista Neural/crescimento & desenvolvimento , Estria Vascular/patologia , Animais , Contagem de Células , Orelha Interna/anormalidades , Feminino , Células Ciliadas Auditivas , Perda Auditiva Neurossensorial/patologia , Homeostase , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Crista Neural/patologia , Sondas RNA
10.
PLoS Genet ; 14(9): e1007658, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30188893

RESUMO

Although the Factor V Leiden (FVL) gene variant is the most prevalent genetic risk factor for venous thrombosis, only 10% of FVL carriers will experience such an event in their lifetime. To identify potential FVL modifier genes contributing to this incomplete penetrance, we took advantage of a perinatal synthetic lethal thrombosis phenotype in mice homozygous for FVL (F5L/L) and haploinsufficient for tissue factor pathway inhibitor (Tfpi+/-) to perform a sensitized dominant ENU mutagenesis screen. Linkage analysis conducted in the 3 largest pedigrees generated from the surviving F5L/L Tfpi+/- mice ('rescues') using ENU-induced coding variants as genetic markers was unsuccessful in identifying major suppressor loci. Whole exome sequencing was applied to DNA from 107 rescue mice to identify candidate genes enriched for ENU mutations. A total of 3,481 potentially deleterious candidate ENU variants were identified in 2,984 genes. After correcting for gene size and multiple testing, Arl6ip5 was identified as the most enriched gene, though not reaching genome-wide significance. Evaluation of CRISPR/Cas9 induced loss of function in the top 6 genes failed to demonstrate a clear rescue phenotype. However, a maternally inherited (not ENU-induced) de novo mutation (Plcb4R335Q) exhibited significant co-segregation with the rescue phenotype (p = 0.003) in the corresponding pedigree. Thrombosis suppression by heterozygous Plcb4 loss of function was confirmed through analysis of an independent, CRISPR/Cas9-induced Plcb4 mutation (p = 0.01).


Assuntos
Fator V/genética , Predisposição Genética para Doença/genética , Mutagênese/genética , Fosfolipase C beta/genética , Tromboembolia Venosa/genética , Animais , Proteínas de Transporte , Modelos Animais de Doenças , Etilnitrosoureia/toxicidade , Feminino , Proteínas de Choque Térmico , Humanos , Estimativa de Kaplan-Meier , Lipoproteínas/genética , Masculino , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutagênese/efeitos dos fármacos , Linhagem , Penetrância , Tromboembolia Venosa/mortalidade , Sequenciamento do Exoma
11.
Proc Natl Acad Sci U S A ; 115(33): E7748-E7757, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30065114

RESUMO

Approximately one-third of the mammalian proteome is transported from the endoplasmic reticulum-to-Golgi via COPII-coated vesicles. SEC23, a core component of coat protein-complex II (COPII), is encoded by two paralogous genes in vertebrates (Sec23a and Sec23b). In humans, SEC23B deficiency results in congenital dyserythropoietic anemia type-II (CDAII), while SEC23A deficiency results in a skeletal phenotype (with normal red blood cells). These distinct clinical disorders, together with previous biochemical studies, suggest unique functions for SEC23A and SEC23B. Here we show indistinguishable intracellular protein interactomes for human SEC23A and SEC23B, complementation of yeast Sec23 by both human and murine SEC23A/B, and rescue of the lethality of sec23b deficiency in zebrafish by a sec23a-expressing transgene. We next demonstrate that a Sec23a coding sequence inserted into the murine Sec23b locus completely rescues the lethal SEC23B-deficient pancreatic phenotype. We show that SEC23B is the predominantly expressed paralog in human bone marrow, but not in the mouse, with the reciprocal pattern observed in the pancreas. Taken together, these data demonstrate an equivalent function for SEC23A/B, with evolutionary shifts in the transcription program likely accounting for the distinct phenotypes of SEC23A/B deficiency within and across species, a paradigm potentially applicable to other sets of paralogous genes. These findings also suggest that enhanced erythroid expression of the normal SEC23A gene could offer an effective therapeutic approach for CDAII patients.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Eritrócitos/metabolismo , Complexos Multiproteicos/biossíntese , Proteínas de Transporte Vesicular/biossíntese , Anemia Diseritropoética Congênita/genética , Anemia Diseritropoética Congênita/metabolismo , Medula Óssea/metabolismo , Medula Óssea/patologia , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Eritrócitos/patologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Complexos Multiproteicos/genética , Especificidade da Espécie , Proteínas de Transporte Vesicular/genética
12.
J Immunol ; 200(12): 4094-4101, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29695418

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a painful and debilitating side effect of cancer chemotherapy with an unclear pathogenesis. Consequently, the available therapies for this neuropathic pain syndrome are inadequate, leading to a significantly reduced quality of life in many patients. Complement, a key component of the innate immune system, has been associated with neuroinflammation, a potentially important trigger of some types of neuropathic pain. However, the role of complement in CIPN remains unclear. To address this issue, we developed a C3 knockout (KO) rat model and induced CIPN in these KO rats and wild-type littermates via the i.p. administration of paclitaxel, a chemotherapeutic agent associated with CIPN. We then compared the severity of mechanical allodynia, complement activation, and intradermal nerve fiber loss between the groups. We found that 1) i.p. paclitaxel administration activated complement in wild-type rats, 2) paclitaxel-induced mechanical allodynia was significantly reduced in C3 KO rats, and 3) the paclitaxel-induced loss of intradermal nerve fibers was markedly attenuated in C3 KO rats. In in vitro studies, we found that paclitaxel-treated rat neuronal cells activated complement, leading to cellular injury. Our findings demonstrate a previously unknown but pivotal role of complement in CIPN and suggest that complement may be a new target for the development of novel therapeutics to manage this painful disease.


Assuntos
Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/farmacologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/imunologia , Animais , Modelos Animais de Doenças , Hiperalgesia/induzido quimicamente , Hiperalgesia/imunologia , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/imunologia , Neuralgia/induzido quimicamente , Neuralgia/imunologia , Paclitaxel , Qualidade de Vida , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley
13.
Proc Natl Acad Sci U S A ; 114(36): 9659-9664, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827327

RESUMO

Factor V Leiden (F5L ) is a common genetic risk factor for venous thromboembolism in humans. We conducted a sensitized N-ethyl-N-nitrosourea (ENU) mutagenesis screen for dominant thrombosuppressor genes based on perinatal lethal thrombosis in mice homozygous for F5L (F5L/L ) and haploinsufficient for tissue factor pathway inhibitor (Tfpi+/- ). F8 deficiency enhanced the survival of F5L/LTfpi+/- mice, demonstrating that F5L/LTfpi+/- lethality is genetically suppressible. ENU-mutagenized F5L/L males and F5L/+Tfpi+/- females were crossed to generate 6,729 progeny, with 98 F5L/LTfpi+/- offspring surviving until weaning. Sixteen lines, referred to as "modifier of Factor 5 Leiden (MF5L1-16)," exhibited transmission of a putative thrombosuppressor to subsequent generations. Linkage analysis in MF5L6 identified a chromosome 3 locus containing the tissue factor gene (F3). Although no ENU-induced F3 mutation was identified, haploinsufficiency for F3 (F3+/- ) suppressed F5L/LTfpi+/- lethality. Whole-exome sequencing in MF5L12 identified an Actr2 gene point mutation (p.R258G) as the sole candidate. Inheritance of this variant is associated with suppression of F5L/LTfpi+/- lethality (P = 1.7 × 10-6), suggesting that Actr2p.R258G is thrombosuppressive. CRISPR/Cas9 experiments to generate an independent Actr2 knockin/knockout demonstrated that Actr2 haploinsufficiency is lethal, supporting a hypomorphic or gain-of-function mechanism of action for Actr2p.R258G Our findings identify F8 and the Tfpi/F3 axis as key regulators in determining thrombosis balance in the setting of F5L and also suggest a role for Actr2 in this process.


Assuntos
Fator V/genética , Trombose/genética , Proteína 2 Relacionada a Actina/genética , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Modelos Animais de Doenças , Etilnitrosoureia , Fator VIII/genética , Feminino , Testes Genéticos , Haploinsuficiência , Homozigoto , Humanos , Lipoproteínas/deficiência , Lipoproteínas/genética , Masculino , Camundongos , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Mutagênese , Gravidez , Fatores de Risco , Trombose/prevenção & controle , Sequenciamento do Exoma
14.
J Lipid Res ; 60(4): 869-879, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30598475

RESUMO

Glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1), the protein that shuttles LPL to the capillary lumen, is essential for plasma triglyceride metabolism. When GPIHBP1 is absent, LPL remains stranded within the interstitial spaces and plasma triglyceride hydrolysis is impaired, resulting in severe hypertriglyceridemia. While the functions of GPIHBP1 in intravascular lipolysis are reasonably well understood, no one has yet identified DNA sequences regulating GPIHBP1 expression. In the current studies, we identified an enhancer element located ∼3.6 kb upstream from exon 1 of mouse Gpihbp1. To examine the importance of the enhancer, we used CRISPR/Cas9 genome editing to create mice lacking the enhancer (Gpihbp1Enh/Enh). Removing the enhancer reduced Gpihbp1 expression by >90% in the liver and by ∼50% in heart and brown adipose tissue. The reduced expression of GPIHBP1 was insufficient to prevent LPL from reaching the capillary lumen, and it did not lead to hypertriglyceridemia-even when mice were fed a high-fat diet. Compound heterozygotes (Gpihbp1Enh/- mice) displayed further reductions in Gpihbp1 expression and exhibited partial mislocalization of LPL (increased amounts of LPL within the interstitial spaces of the heart), but the plasma triglyceride levels were not perturbed. The enhancer element that we identified represents the first insight into DNA sequences controlling Gpihbp1 expression.


Assuntos
Tecido Adiposo Marrom/metabolismo , Lipase Lipoproteica/metabolismo , Receptores de Lipoproteínas/genética , Animais , Sistemas CRISPR-Cas/genética , Cromatina/genética , Coração , Humanos , Camundongos , Camundongos Endogâmicos , Receptores de Lipoproteínas/análise , Receptores de Lipoproteínas/metabolismo , Análise de Sequência de DNA , Triglicerídeos/sangue , Triglicerídeos/metabolismo
15.
Development ; 143(21): 3956-3968, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27633994

RESUMO

During late embryogenesis, mammary epithelial cells initiate migration programs that drive ductal invasion into the surrounding adipose-rich mesenchyme. Currently, branching morphogenesis is thought to depend on the mobilization of the membrane-anchored matrix metalloproteinases MMP14 (MT1-MMP) and MMP15 (MT2-MMP), which drive epithelial cell invasion by remodeling the extracellular matrix and triggering associated signaling cascades. However, the roles that these proteinases play during mammary gland development in vivo remain undefined. Here, we characterize the impact of global Mmp14 and Mmp15 targeting on early postnatal mammary gland development in mice. Unexpectedly, both Mmp14-/- and Mmp15-/- mammary glands retain the ability to generate intact ductal networks. Although neither proteinase is required for branching morphogenesis, transcriptome profiling reveals a key role for MMP14 and MMP15 in regulating mammary gland adipocyte differentiation. Whereas MMP14 promotes the generation of white fat depots crucial for energy storage, MMP15 differentially controls the formation of thermogenic brown fat. Taken together, these data not only indicate that current paradigms relevant to proteinase-dependent morphogenesis need be revisited, but also identify new roles for the enzymes in regulating adipocyte fate determination in the developing mammary gland.


Assuntos
Glândulas Mamárias Animais/crescimento & desenvolvimento , Metaloproteinase 14 da Matriz/fisiologia , Metaloproteinase 15 da Matriz/fisiologia , Morfogênese/genética , Adipócitos/fisiologia , Adipogenia/genética , Animais , Animais Recém-Nascidos , Diferenciação Celular/genética , Metabolismo Energético/genética , Feminino , Metaloproteinase 14 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Termogênese/genética
16.
Clin Genet ; 95(3): 375-383, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30506946

RESUMO

Amelogenesis imperfecta (AI) is a collection of isolated (non-syndromic) inherited diseases affecting dental enamel formation or a clinical phenotype in syndromic conditions. We characterized three consanguineous AI families with generalized irregular hypoplastic enamel with rapid attrition that perfectly segregated with homozygous defects in a novel gene: RELT that is a member of the tumor necrosis factor receptor superfamily (TNFRSF). RNAscope in situ hybridization of wild-type mouse molars and incisors showed specific Relt mRNA expression by secretory stage ameloblasts and by odontoblasts. Relt-/- mice generated by CRISPR/Cas9 exhibited incisor and molar enamel malformations. Relt-/- enamel had a rough surface and underwent rapid attrition. Normally unmineralized spaces in the deep enamel near the dentino-enamel junction (DEJ) were as highly mineralized as the adjacent enamel, which likely altered the mechanical properties of the DEJ. Phylogenetic analyses showed the existence of selective pressure on RELT gene outside of tooth development, indicating that the human condition may be syndromic, which possibly explains the history of small stature and severe childhood infections in two of the probands. Knowing a TNFRSF member is critical during the secretory stage of enamel formation advances our understanding of amelogenesis and improves our ability to diagnose human conditions featuring enamel malformations.


Assuntos
Amelogênese Imperfeita/diagnóstico , Amelogênese Imperfeita/genética , Genes Recessivos , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Receptores do Fator de Necrose Tumoral/genética , Consanguinidade , Genótipo , Mutação em Linhagem Germinativa , Humanos , Hibridização In Situ , Linhagem , Fenótipo , Splicing de RNA , Sequenciamento do Exoma
17.
FASEB J ; : fj201800479, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29906243

RESUMO

Measures of the adipokine chemerin are elevated in multiple cardiovascular diseases, including hypertension, but little mechanistic work has been done to implicate chemerin as being causative in such diseases. The chemerin knockout (KO) rat was created to test the hypothesis that removal of chemerin would reduce pressure in the normal and hypertensive state. Western analyses confirmed loss of chemerin in the plasma and tissues of the KO vs. wild-type (WT) rats. Chemerin concentration in plasma and tissues was lower in WT females than in WT males, as determined by Western analysis. Conscious male and female KO rats had modest differences in baseline measures vs. the WT that included systolic, diastolic, mean arterial and pulse pressures, and heart rate, all measured telemetrically. The mineralocorticoid deoxycorticosterone acetate (DOCA) and salt water, combined with uninephrectomy as a hypertensive stimulus, elevated mean and systolic blood pressures of the male KO higher than the male WT. By contrast, all pressures in the female KO were lower than their WT throughout DOCA-salt treatment. These results revealed an unexpected sex difference in chemerin expression and the ability of chemerin to modify blood pressure in response to a hypertensive challenge.-Watts, S. W., Darios, E. S., Mullick, A. E., Garver, H., Saunders, T. L., Hughes, E. D., Filipiak, W. E., Zeidler, M. G., McMullen, N., Sinal, C. J., Kumar, R. K., Ferland, D. J., Fink, G. D. The chemerin knockout rat reveals chemerin dependence in female, but not male, experimental hypertension.

18.
Nature ; 481(7382): 457-62, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22281595

RESUMO

Several cell types have been proposed to create niches for haematopoietic stem cells (HSCs). However, the expression patterns of HSC maintenance factors have not been systematically studied and no such factor has been conditionally deleted from any candidate niche cell. Thus, the cellular sources of these factors are undetermined. Stem cell factor (SCF; also known as KITL) is a key niche component that maintains HSCs. Here, using Scf(gfp) knock-in mice, we found that Scf was primarily expressed by perivascular cells throughout the bone marrow. HSC frequency and function were not affected when Scf was conditionally deleted from haematopoietic cells, osteoblasts, nestin-cre- or nestin-creER-expressing cells. However, HSCs were depleted from bone marrow when Scf was deleted from endothelial cells or leptin receptor (Lepr)-expressing perivascular stromal cells. Most HSCs were lost when Scf was deleted from both endothelial and Lepr-expressing perivascular cells. Thus, HSCs reside in a perivascular niche in which multiple cell types express factors that promote HSC maintenance.


Assuntos
Endotélio/citologia , Endotélio/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Nicho de Células-Tronco/fisiologia , Células Estromais/citologia , Células Estromais/metabolismo , Alelos , Animais , Técnicas de Introdução de Genes , Proteínas de Filamentos Intermediários/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Nestina , Osteoblastos/citologia , Osteoblastos/metabolismo , Pericitos/citologia , Pericitos/metabolismo , Receptores para Leptina/metabolismo , Fator de Células-Tronco/deficiência , Fator de Células-Tronco/genética , Fator de Células-Tronco/metabolismo
19.
Kidney Int ; 92(4): 909-921, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28554737

RESUMO

Activation of JAK-STAT signaling has been implicated in the pathogenesis of diabetic kidney disease. An increased expression of JAK-STAT genes was found in kidney glomerular cells, including podocytes, in patients with early diabetic kidney disease. However, it is not known whether increased expression of JAK or STAT isoforms in glomerular cells can lead to worsening nephropathy in the setting of diabetes. Therefore, we overexpressed JAK2 mRNA specifically in glomerular podocytes of 129S6 mice to determine whether this change alone could worsen diabetic kidney disease. A 2-3 fold increase in glomerular JAK2 expression, an increase similar to that found in humans with early diabetic kidney disease, led to substantial and statistically significant increases in albuminuria, mesangial expansion, glomerulosclerosis, glomerular fibronectin accumulation, and glomerular basement membrane thickening, and a significant reduction in podocyte density in diabetic mice. Treatment with a specific JAK1/2 inhibitor for 2 weeks partly reversed the major phenotypic changes of diabetic kidney disease and specifically normalized expression of a number of downstream STAT3-dependent genes implicated in diabetic kidney disease progression. Thus, moderate increases in podocyte JAK2 expression at levels similar to those in patients with early diabetic kidney disease can lead directly to phenotypic and other alterations of progressive diabetic glomerulopathy. Hence, inhibition of these changes by treatment with a JAK1/2 inhibitor suggests that such treatment may help retard progression of early diabetic kidney disease in patients.


Assuntos
Nefropatias Diabéticas/patologia , Membrana Basal Glomerular/patologia , Janus Quinase 2/metabolismo , Podócitos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Albuminúria/tratamento farmacológico , Albuminúria/patologia , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/urina , Modelos Animais de Doenças , Progressão da Doença , Fibronectinas/metabolismo , Membrana Basal Glomerular/citologia , Humanos , Janus Quinase 2/antagonistas & inibidores , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Inibidores de Proteínas Quinases/uso terapêutico , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Kidney Int ; 91(2): 365-374, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27692815

RESUMO

High blood pressure is a common cause of chronic kidney disease. Because CD40, a member of the tumor necrosis factor receptor family, has been linked to the progression of kidney disease in ischemic nephropathy, we studied the role of Cd40 in the development of hypertensive renal disease. The Cd40 gene was mutated in the Dahl S genetically hypertensive rat with renal disease by targeted-gene disruption using zinc-finger nuclease technology. These rats were then given low (0.3%) and high (2%) salt diets and compared. The resultant Cd40 mutants had significantly reduced levels of both urinary protein excretion (41.8 ± 3.1 mg/24 h vs. 103.7 ± 4.3 mg/24 h) and plasma creatinine (0.36 ± 0.05 mg/dl vs. 1.15 ± 0.19 mg/dl), with significantly higher creatinine clearance compared with the control S rats (3.04 ± 0.48 ml/min vs. 0.93 ± 0.15 ml/min), indicating renoprotection was conferred by mutation of the Cd40 locus. Furthermore, the Cd40 mutants had a significant attenuation in renal fibrosis, which persisted on the high salt diet. However, there was no difference in systolic blood pressure between the control and Cd40 mutant rats. Thus, these data serve as the first evidence for a direct link between Cd40 and hypertensive nephropathy. Hence, renal fibrosis is one of the underlying mechanisms by which Cd40 plays a crucial role in the development of hypertensive renal disease.


Assuntos
Pressão Sanguínea/genética , Antígenos CD40/genética , Hipertensão/genética , Nefropatias/prevenção & controle , Rim/metabolismo , Mutação , Proteinúria/prevenção & controle , Animais , Linfócitos B/metabolismo , Antígenos CD40/metabolismo , Movimento Celular , Creatinina/sangue , Dieta Hipossódica , Modelos Animais de Doenças , Fibrose , Predisposição Genética para Doença , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Rim/patologia , Rim/fisiopatologia , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/fisiopatologia , Ativação Linfocitária , Fenótipo , Fosforilação , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Proteinúria/genética , Proteinúria/metabolismo , Proteinúria/fisiopatologia , Ratos Endogâmicos Dahl , Ratos Mutantes , Eliminação Renal , Cloreto de Sódio na Dieta , Linfócitos T/metabolismo , Fatores de Tempo , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA