Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
NPJ Digit Med ; 5(1): 59, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538215

RESUMO

Racial and ethnic minorities have borne a particularly acute burden of the COVID-19 pandemic in the United States. There is a growing awareness from both researchers and public health leaders of the critical need to ensure fairness in forecast results. Without careful and deliberate bias mitigation, inequities embedded in data can be transferred to model predictions, perpetuating disparities, and exacerbating the disproportionate harms of the COVID-19 pandemic. These biases in data and forecasts can be viewed through both statistical and sociological lenses, and the challenges of both building hierarchical models with limited data availability and drawing on data that reflects structural inequities must be confronted. We present an outline of key modeling domains in which unfairness may be introduced and draw on our experience building and testing the Google-Harvard COVID-19 Public Forecasting model to illustrate these challenges and offer strategies to address them. While targeted toward pandemic forecasting, these domains of potentially biased modeling and concurrent approaches to pursuing fairness present important considerations for equitable machine-learning innovation.

2.
NPJ Digit Med ; 4(1): 146, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625656

RESUMO

The COVID-19 pandemic has highlighted the global need for reliable models of disease spread. We propose an AI-augmented forecast modeling framework that provides daily predictions of the expected number of confirmed COVID-19 deaths, cases, and hospitalizations during the following 4 weeks. We present an international, prospective evaluation of our models' performance across all states and counties in the USA and prefectures in Japan. Nationally, incident mean absolute percentage error (MAPE) for predicting COVID-19 associated deaths during prospective deployment remained consistently <8% (US) and <29% (Japan), while cumulative MAPE remained <2% (US) and <10% (Japan). We show that our models perform well even during periods of considerable change in population behavior, and are robust to demographic differences across different geographic locations. We further demonstrate that our framework provides meaningful explanatory insights with the models accurately adapting to local and national policy interventions. Our framework enables counterfactual simulations, which indicate continuing Non-Pharmaceutical Interventions alongside vaccinations is essential for faster recovery from the pandemic, delaying the application of interventions has a detrimental effect, and allow exploration of the consequences of different vaccination strategies. The COVID-19 pandemic remains a global emergency. In the face of substantial challenges ahead, the approach presented here has the potential to inform critical decisions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA