Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Pharmacol Toxicol ; 62: 197-210, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34591605

RESUMO

Imperfect medication adherence remains the biggest predictor of treatment failure for patients with tuberculosis. Missed doses during treatment lead to relapse, tuberculosis resistance, and further spread of disease. Understanding individual patient phenotypes, population pharmacokinetics, resistance development, drug distribution to tuberculosis lesions, and pharmacodynamics at the site of infection is necessary to fully measure the impact of adherence on patient outcomes. To decrease the impact of expected variabilityin drug intake on tuberculosis outcomes, an improvement in patient adherence and new forgiving regimens that protect against missed doses are needed. In this review, we summarize emerging technologies to improve medication adherence in clinical practice and provide suggestions on how digital adherence technologies can be incorporated in clinical trials and practice and the drug development pipeline that will lead to more forgiving regimens and benefit patients suffering from tuberculosis.


Assuntos
Desenvolvimento de Medicamentos , Adesão à Medicação , Humanos
2.
Clin Infect Dis ; 79(4): 983-989, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38568956

RESUMO

BACKGROUND: One month of daily rifapentine + isoniazid (1HP) is an effective, ultrashort option for tuberculosis prevention in people with human immunodeficiency virus (HIV). However, rifapentine may decrease antiretroviral drug concentrations and increase the risk of virologic failure. AIDS Clinical Trials Group A5372 evaluated the effect of 1HP on the pharmacokinetics of twice-daily dolutegravir. METHODS: A5372 was a multicenter, pharmacokinetic study in people with HIV (≥18 years) already on dolutegravir-containing antiretroviral therapy with HIV RNA <50 copies/mL. Participants received daily rifapentine/isoniazid (600 mg/300 mg) for 28 days as part of 1HP. Dolutegravir was increased to 50 mg twice daily during 1HP, and intensive pharmacokinetic sampling was performed on day 0 (before 1HP) and on the final day of 1HP treatment. RESULTS: Thirty-two participants (41% female; 66% Black/African; median [Q1, Q3] age, 42 [34, 49] years) were included in the pharmacokinetic analysis; 31 had HIV RNA <50 copies/mL at the end of 1HP dosing. One participant had an HIV RNA of 160 copies/mL at day 28, with HIV RNA <50 copies/mL upon repeat testing on day 42. The median (Q1, Q3) dolutegravir trough concentration was 1751 ng/mL (1195, 2542) on day 0 versus 1987 ng/mL (1331, 2278) on day 28 (day 28:day 0 geometric mean ratio, 1.05 [90% confidence interval, .93-1.2]; P = .43). No serious adverse events were reported. CONCLUSIONS: Dolutegravir trough concentrations with 50 mg twice-daily dosing during 1HP treatment were greater than those with standard-dose dolutegravir once daily without 1HP. These pharmacokinetic, virologic, and safety data provide support for twice-daily dolutegravir use in combination with 1HP for tuberculosis prevention. CLINICAL TRIALS REGISTRATION: NCT04272242.


Assuntos
Infecções por HIV , Compostos Heterocíclicos com 3 Anéis , Isoniazida , Oxazinas , Piperazinas , Piridonas , Rifampina , Tuberculose , Humanos , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Compostos Heterocíclicos com 3 Anéis/efeitos adversos , Feminino , Adulto , Masculino , Rifampina/análogos & derivados , Rifampina/administração & dosagem , Rifampina/farmacocinética , Rifampina/uso terapêutico , Isoniazida/administração & dosagem , Isoniazida/farmacocinética , Isoniazida/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Pessoa de Meia-Idade , Tuberculose/prevenção & controle , Tuberculose/tratamento farmacológico , Antituberculosos/farmacocinética , Antituberculosos/administração & dosagem , Antituberculosos/uso terapêutico , Esquema de Medicação , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/uso terapêutico , Quimioterapia Combinada
3.
Annu Rev Pharmacol Toxicol ; 61: 495-516, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-32806997

RESUMO

Tuberculosis (TB) kills more people than any other infectious disease. Challenges for developing better treatments include the complex pathology due to within-host immune dynamics, interpatient variability in disease severity and drug pharmacokinetics-pharmacodynamics (PK-PD), and the growing emergence of resistance. Model-informed drug development using quantitative and translational pharmacology has become increasingly recognized as a method capable of drug prioritization and regimen optimization to efficiently progress compounds through TB drug development phases. In this review, we examine translational models and tools, including plasma PK scaling, site-of-disease lesion PK, host-immune and bacteria interplay, combination PK-PD models of multidrug regimens, resistance formation, and integration of data across nonclinical and clinical phases.We propose a workflow that integrates these tools with computational platforms to identify drug combinations that have the potential to accelerate sterilization, reduce relapse rates, and limit the emergence of resistance.


Assuntos
Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Antituberculosos/uso terapêutico , Combinação de Medicamentos , Humanos , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
4.
Antimicrob Agents Chemother ; 68(8): e0019024, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39016594

RESUMO

According to the World Health Organization, the number of tuberculosis (TB) infections and the drug-resistant burden worldwide increased by 4.5% and 3.0%, respectively, between 2020 and 2021. Disease severity and complexity drive the interest for undertaking new clinical trials to provide efficient treatment to limit spread and drug resistance. TB Alliance conducted a phase 2 study in 106 patients to guide linezolid (LZD) dose selection using early bactericidal activity over 14 days of treatment. LZD is highly efficient for drug-resistant TB treatment, but treatment monitoring is required since serious adverse events can occur. The objective of this study was to develop a pharmacokinetic-pharmacodynamic (PKPD) model to analyze the dose-response relationship between linezolid exposure and efficacy biomarkers. Using time to positivity (TTP) and colony-forming unit (CFU) count data, we developed a PKPD model in six dosing regimens, differing on LZD dosing intensity. A one-compartment model with five transit absorption compartments and non-linear auto-inhibition elimination described best LZD pharmacokinetic characteristics. TTP and CFU logarithmic scaled [log(CFU)] showed a bactericidal activity of LZD against Mycobacterium tuberculosis. TTP was defined by a model with two significant covariates: the presence of uni- and bilateral cavities decreased baseline TTP value by 24%, and an increase on every 500 mg/L/h of cumulative area under the curve increased the rate at which TTP and CFU change from baseline by 20% and 11%, respectively. CLINICAL TRIALS: This study is registered with ClinicalTrials.gov as NCT02279875.


Assuntos
Antituberculosos , Linezolida , Mycobacterium tuberculosis , Linezolida/farmacocinética , Linezolida/farmacologia , Linezolida/administração & dosagem , Humanos , Antituberculosos/farmacocinética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Antituberculosos/administração & dosagem , Mycobacterium tuberculosis/efeitos dos fármacos , Adulto , Masculino , Feminino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Relação Dose-Resposta a Droga , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Contagem de Colônia Microbiana
5.
Antimicrob Agents Chemother ; 68(10): e0061524, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39287403

RESUMO

Despite known treatments, tuberculosis (TB) remains the world's top infectious killer, highlighting the pressing need for new drug regimens. To prioritize the most efficacious drugs for clinical testing, we previously developed a PK-PD translational platform with bacterial dynamics that reliably predicted short-term monotherapy outcomes in Phase IIa trials from preclinical mouse studies. In this study, we extended our platform to include PK-PD models that account for drug-drug interactions in combination regimens and bacterial regrowth in our bacterial dynamics model to predict cure at the end of treatment and relapse 6 months post-treatment. The Phase III STAND trial testing a new regimen comprised of pretomanid (Pa), moxifloxacin (M), and pyrazinamide (Z) (PaMZ) was suspended after a separate ongoing trial (NC-005) suggested that adding bedaquiline (B) to the PaMZ regimen would improve efficacy. To forecast if the addition of B would, indeed, benefit the PaMZ regimen, we applied an extended translational platform to both regimens. We predicted currently available short- and long-term clinical data well for drug combinations related to BPaMZ. We predicted the addition of B to PaMZ to shorten treatment duration by 2 months and to have similar bacteriological success to standard HRZE treatment (considering only treatment success but not withdrawal from side effects and other adverse events), both at the end of treatment for treatment efficacy and 6 months after treatment has ended in relapse prevention. Using BPaMZ as a case study, we have demonstrated our translational platform can predict Phase II and III outcomes prior to actual trials, allowing us to better prioritize the regimens most likely to succeed.


Assuntos
Antituberculosos , Diarilquinolinas , Moxifloxacina , Mycobacterium tuberculosis , Pirazinamida , Antituberculosos/uso terapêutico , Antituberculosos/farmacologia , Pirazinamida/uso terapêutico , Pirazinamida/farmacologia , Animais , Camundongos , Diarilquinolinas/farmacologia , Diarilquinolinas/uso terapêutico , Moxifloxacina/uso terapêutico , Moxifloxacina/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Humanos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Quimioterapia Combinada , Nitroimidazóis/uso terapêutico , Nitroimidazóis/farmacologia , Resultado do Tratamento , Interações Medicamentosas
6.
Bull World Health Organ ; 102(8): 600-607, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39070602

RESUMO

Simpler, shorter, safer and more effective treatments for tuberculosis that are easily accessible to all people with tuberculosis are desperately needed. In 2016, the World Health Organization (WHO) developed target regimen profiles for the treatment of tuberculosis to make drug developers aware of both the important features of treatment regimens, and patient and programmatic needs at the country level. In view of recent ground-breaking advances in tuberculosis treatment, WHO has revised and updated these regimen profiles. We used a similar process as for the 2016 profiles, including a baseline treatment landscape analysis, an initial stakeholder survey, modelling studies estimating the impact and cost-effectiveness of novel tuberculosis treatment regimens, and an extensive stakeholder consultation. We developed target regimen profiles for the treatment of rifampicin-susceptible and rifampicin-resistant tuberculosis, as well as a pan-tuberculosis regimen that would be appropriate for patients with any type of tuberculosis. We describe the revised target regimen profile characteristics, with specific minimal and optimal targets to be met, rationale and justification, and aspects relevant to all target regimen profiles (drug susceptibility testing, adherence and forgiveness, treatment strategies, post-tuberculosis lung disease, and cost and access considerations). We discuss the trade-offs of proposed characteristics for decision-making at developmental or operational levels. We expect that, following these target regimen profile revisions, tuberculosis treatment developers will produce regimens that are quality-assured, affordable and widely available, and that meet the needs of affected populations.


Des traitements de la tuberculose plus simples, plus courts, plus sûrs et plus efficaces, facilement accessibles à toutes les personnes atteintes de tuberculose, font cruellement défaut. En 2016, l'Organisation mondiale de la santé (OMS) a élaboré des profils de schéma thérapeutique cible pour le traitement de la tuberculose, afin de sensibiliser les concepteurs de médicaments aux caractéristiques importantes des schémas thérapeutiques et aux besoins des patients et des programmes au niveau national. Compte tenu des avancées récentes dans le traitement de la tuberculose, l'OMS a révisé et mis à jour ces profils de schéma thérapeutique. Nous avons appliqué un processus similaire à celui des profils de 2016, y compris une analyse de base des différentes possibilités thérapeutiques, une enquête initiale auprès des parties prenantes, des études de modélisation estimant l'impact et le rapport coût-efficacité des nouveaux schémas thérapeutiques pour la tuberculose, ainsi qu'une vaste consultation des parties prenantes. Nous avons élaboré des profils de schéma thérapeutique cible pour le traitement de la tuberculose sensible à la rifampicine ou résistant à la rifampicine, ainsi qu'un schéma multiforme qui conviendrait aux patients atteints de n'importe quel type de tuberculose. Nous décrivons les caractéristiques du profil révisé de schéma thérapeutique cible, avec les objectifs minimaux et optimaux spécifiques à atteindre, le raisonnement et les aspects pertinents pour tous les profils de schéma thérapeutique cible (tests de sensibilité aux médicaments, observance thérapeutique et manque d'observance («forgiveness¼), stratégies de traitement, maladie pulmonaire post-tuberculeuse et considérations de coût et d'accès). Nous discutons des compromis des caractéristiques proposées pour la prise de décisions au niveau du développement ou au niveau opérationnel. Nous espérons qu'à la suite de ces révisions du profil de schéma thérapeutique cible, les concepteurs de traitements antituberculeux produiront des schémas dont la qualité est assurée, qui sont abordables et largement disponibles et qui répondent aux besoins des populations touchées.


Se necesitan con urgencia tratamientos más sencillos, breves, seguros y eficaces contra la tuberculosis que sean fácilmente accesibles para todas las personas con tuberculosis. En 2016, la Organización Mundial de la Salud (OMS) elaboró perfiles objetivo de esquemas terapéuticos para el tratamiento de la tuberculosis con el fin de que los fabricantes de medicamentos conocieran tanto las características importantes de estos esquemas como las necesidades programáticas y de los pacientes en cada país. Teniendo en cuenta los recientes avances pioneros en el tratamiento de la tuberculosis, la OMS ha revisado y actualizado estos perfiles de esquemas terapéuticos. Se ha seguido un proceso similar al de los perfiles de 2016, que incluye un análisis de referencia del panorama terapéutico, una encuesta inicial a las partes interesadas, estudios de modelización para estimar el impacto y la rentabilidad de los nuevos esquemas terapéuticos para el tratamiento de la tuberculosis, y una amplia consulta a las partes interesadas. Se desarrollaron perfiles objetivo de esquemas terapéuticos para el tratamiento de la tuberculosis sensibles a la rifampicina y resistente a la rifampicina, así como un esquema farmacológico capaz de tratar todas las formas de tuberculosis que sería apropiado para pacientes con cualquier tipo de tuberculosis. Se describieron las características revisadas de los perfiles objetivo de los esquemas terapéuticos, con los objetivos mínimos y óptimos específicos que deben alcanzarse, los fundamentos y la justificación, y los aspectos relevantes para todos los perfiles objetivo de los esquemas terapéuticos (pruebas de sensibilidad a los fármacos, adherencia y olvido, estrategias de tratamiento, enfermedad pulmonar postuberculosa, y consideraciones de coste y acceso). Se discutieron las ventajas y desventajas de las características propuestas para la toma de decisiones a nivel de desarrollo u operativo. Se espera que, tras estas revisiones de los perfiles objetivo de los esquemas terapéuticos, las personas encargadas del desarrollo de tratamientos para la tuberculosis elaboren esquemas terapéuticos de calidad garantizada, asequibles y ampliamente disponibles, y que respondan a las necesidades de las poblaciones afectadas.


Assuntos
Antituberculosos , Tuberculose , Organização Mundial da Saúde , Humanos , Antituberculosos/uso terapêutico , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Rifampina/uso terapêutico , Análise Custo-Benefício , Adesão à Medicação
7.
Pediatr Res ; 2024 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-39462098

RESUMO

BACKGROUND: Variability in pediatric dosing of desmopressin (ddAVP) in AVP-deficiency (AVP-D) is well-documented but dosing recommendations are limited. This study evaluates and optimizes ddAVP dosing regimens in children with AVP-D using pharmacokinetic and pharmacodynamic (PK/PD) simulations. METHODS: Retrospective electronic health record review was done to identify children (<18 years) with AVP-D on ddAVP evaluated in the outpatient setting using ICD 9 and 10 codes. A previously developed PK/PD model from Michelet et al was used to simulate ddAVP concentrations and urine rates based on a child's age and ddAVP dose. The effects of demographic characteristics (age, weight, etc.) on dose and urine rate were investigated through simulations to optimize doses of ddAVP for children who were wet overnight. RESULT: A total of 276 dosing records were identified among 53 children with AVP-D. Simulations indicated that in children under 5 years of age who were wet overnight, increasing the outpatient dose to 50 mcg was predicted to decrease urine rate to a pattern similar to those who remained dry. CONCLUSION: An initial outpatient dose of at least 50 mcg for children between 1 and 5 years of age would improve efficacy of ddAVP. IMPACT: 50 mcg is likely a safe initial outpatient dose of oral desmopressin tablet for young children 1-5 yrs of age with central Diabetes Insipidus/AVP-Deficiency. We confirmed that desmopressin doses vary greatly in children with central Diabetes Insipidus/AVP-deficiency. Real-world clinical data can be leveraged to improve medication dosing in rare diseases.

8.
Sensors (Basel) ; 24(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39124071

RESUMO

Poor pain alleviation remains a problem following orthopedic surgery, leading to prolonged recovery time, increased morbidity, and prolonged opioid use after hospitalization. Wearable device data, collected during postsurgical recovery, may help ameliorate poor pain alleviation because a patient's physiological state during the recovery process may be inferred from sensor data. In this study, we collected smart ring data from 37 inpatients following orthopedic surgery and developed machine learning models to predict if a patient had postsurgical poor pain alleviation. Machine learning models based on the smart ring data were able to predict if a patient had poor pain alleviation during their hospital stay with an accuracy of 70.0%, an F1-score of 0.769, and an area under the receiver operating characteristics curve of 0.762 on an independent test dataset. These values were similar to performance metrics from existing models that rely on static, preoperative patient factors. Our results provide preliminary evidence that wearable device data may help control pain after orthopedic surgery by incorporating real-time, objective estimates of a patient's pain during recovery.


Assuntos
Aprendizado de Máquina , Procedimentos Ortopédicos , Dor Pós-Operatória , Dispositivos Eletrônicos Vestíveis , Humanos , Procedimentos Ortopédicos/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Curva ROC
9.
Eur J Orthop Surg Traumatol ; 34(1): 569-576, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37650973

RESUMO

PURPOSE: Poor pain alleviation (PPA) after orthopaedic surgery is known to increase recovery time, readmissions, patient dissatisfaction, and lead to chronic postsurgical pain. This study's goal was to identify the magnitude of PPA and its risk factors in the orthopaedic trauma patient population. METHODS: A single-institution's electronic medical records from 2015 to 2018 were available for retrospective analysis. Inclusion criteria included orthopaedic fracture surgery patients admitted to the hospital for 24 h or more. Collected variables included surgery type, basic demographics, comorbidities, inpatient medications, pain scores, and length of stay. PPA was defined as a pain score of ≥ 8 on at least three occasions 4-12 h apart. Associations between collected variables and PPA were derived using a multivariable logistic regression model and expressed in adjusted odds ratios. RESULTS: A total of 1663 patients underwent fracture surgeries from 2015 to 2018, and 25% of them reported PPA. Female sex, previous use of narcotics, increased ASA, increased baseline pain score, and younger age without comorbidities were identified as significant risk factors for PPA. Spine procedures were associated with increased risk of PPA, while procedures in the hip, shoulder, and knee had reduced risk. Patients experiencing PPA were less likely to receive NSAIDs compared to other pain medications. CONCLUSIONS: This study found an unacceptably high rate of PPA after fracture surgery. While the identified risk factors for PPA were all non-modifiable, our results highlight the necessity to improve application of current multimodal approaches to pain alleviation including a more personalized approach to pain alleviation.


Assuntos
Fraturas Ósseas , Ortopedia , Humanos , Feminino , Pacientes Internados , Estudos Retrospectivos , Cirurgia de Cuidados Críticos , Dor Pós-Operatória/etiologia , Fraturas Ósseas/cirurgia
10.
Clin Infect Dis ; 76(11): 1903-1910, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36804834

RESUMO

BACKGROUND: Safer, better, and shorter treatments for multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) are an urgent global health need. The phase 3 clinical trial Nix-TB (NCT02333799) tested a 6-month treatment of MDR and XDR-TB consisting of high-dose linezolid, bedaquiline, and pretomanid (BPaL). In this study, we investigate the relationship between the pharmacokinetic characteristics of the drugs, patient characteristics and efficacy endpoints from Nix-TB. METHODS: Pharmacokinetic data were collected at weeks 2, 8, and 16. Efficacy endpoints including treatment outcomes, time to stable culture conversion, and longitudinal time to positivity in the mycobacterial growth indicator tube assay were each characterized using nonlinear mixed-effects modeling. Relationships between patient, treatment pharmacokinetics, and disease characteristics and efficacy endpoints were evaluated. RESULTS: Data from 93 (85% of the total) participants were analyzed. Higher body mass index was associated with a lower incidence of unfavorable treatment outcomes. Median time to stable culture conversion was 3 months in patients with lower baseline burden compared with 4.5 months in patients with high baseline burden. Participants with minimal disease had steeper time to positivity trajectories compared with participants with high-risk phenotypes. No relationship between any drugs' pharmacokinetics (drug concentration or exposure metrics) and any efficacy outcomes was observed. CONCLUSIONS: We have successfully described efficacy endpoints of a BPaL regimen from the Nix-TB trial. Participants with high-risk phenotypes significantly delayed time to culture conversion and bacterial clearance. The lack of a relationship between pharmacokinetic exposures and pharmacodynamic biomarkers opens the possibility to use lower, safer doses, particularly for toxicity-prone linezolid. CLINICAL TRIALS REGISTRATION: NCT02333799.


Assuntos
Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Linezolida/uso terapêutico , Tuberculose/tratamento farmacológico , Diarilquinolinas/uso terapêutico
11.
Clin Infect Dis ; 76(3): e580-e589, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36041016

RESUMO

BACKGROUND: Tuberculosis (TB) Trials Consortium Study 31/AIDS Clinical Trials Group A5349, an international randomized open-label phase 3 noninferiority trial showed that a 4-month daily regimen substituting rifapentine for rifampin and moxifloxacin for ethambutol had noninferior efficacy and was safe for the treatment of drug-susceptible pulmonary TB (DS-PTB) compared with the standard 6-month regimen. We explored results among the prespecified subgroup of people with human immunodeficiency virus (HIV) (PWH). METHODS: PWH and CD4+ counts ≥100 cells/µL were eligible if they were receiving or about to initiate efavirenz-based antiretroviral therapy (ART). Primary endpoints of TB disease-free survival 12 months after randomization (efficacy) and ≥ grade 3 adverse events (AEs) on treatment (safety) were compared, using a 6.6% noninferiority margin for efficacy. Randomization was stratified by site, pulmonary cavitation, and HIV status. PWH were enrolled in a staged fashion to support cautious evaluation of drug-drug interactions between rifapentine and efavirenz. RESULTS: A total of 2516 participants from 13 countries in sub-Saharan Africa, Asia, and the Americas were enrolled. Among 194 (8%) microbiologically eligible PWH, the median CD4+ count was 344 cells/µL (interquartile range: 223-455). The rifapentine-moxifloxacin regimen was noninferior to control (absolute difference in unfavorable outcomes -7.4%; 95% confidence interval [CI] -20.8% to 6.0%); the rifapentine regimen was not noninferior to control (+7.5% [95% CI, -7.3% to +22.4%]). Fewer AEs were reported in rifapentine-based regimens (15%) than the control regimen (21%). CONCLUSIONS: In people with HIV-associated DS-PTB with CD4+ counts ≥100 cells/µL on efavirenz-based ART, the 4-month daily rifapentine-moxifloxacin regimen was noninferior to the 6-month control regimen and was safe. CLINICAL TRIALS REGISTRATION: NCT02410772.


Assuntos
Infecções por HIV , Tuberculose Pulmonar , Tuberculose , Humanos , Rifampina/efeitos adversos , Moxifloxacina/efeitos adversos , Antituberculosos/efeitos adversos , HIV , Isoniazida/uso terapêutico , Quimioterapia Combinada , Tuberculose Pulmonar/complicações , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia , Tuberculose/tratamento farmacológico , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico
12.
Antimicrob Agents Chemother ; 67(5): e0233918, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37098914

RESUMO

Tenofovir (TFV) and emtricitabine (FTC) are part of the recommended highly active antiretroviral therapy (ART). Both molecules show a large interindividual pharmacokinetic (PK) variability. Here, we modeled the concentrations of plasma TFV and FTC and their intracellular metabolites (TFV diphosphate [TFV-DP] and FTC triphosphate [FTC-TP]) collected after 4 and 24 weeks of treatment in 34 patients from the ANRS 134-COPHAR 3 trial. These patients received daily (QD) atazanavir (300 mg), ritonavir (100 mg), and a fixed-dose combination of coformulated TFV disoproxil fumarate (300 mg) and FTC (200 mg). Dosing history was collected using a medication event monitoring system. A three-compartment model with absorption delay (Tlag) was selected to describe the PK of, respectively, TFV/TFV-DP and FTC/FTC-TP. TFV and FTC apparent clearances, 114 L/h (relative standard error [RSE] = 8%) and 18.1 L/h (RSE = 5%), respectively, were found to decrease with age. However, no significant association was found with the polymorphisms ABCC2 rs717620, ABCC4 rs1751034, and ABCB1 rs1045642. The model allows prediction of TFV-DP and FTC-TP concentrations at steady state with alternative regimens.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Humanos , Tenofovir , Emtricitabina , Infecções por HIV/tratamento farmacológico , Fármacos Anti-HIV/farmacocinética
13.
Antimicrob Agents Chemother ; 67(7): e0144822, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37358463

RESUMO

Rifampicin-resistant tuberculosis (RR-TB) involves treatment with many drugs that can prolong the QT interval; this risk may increase when multiple QT-prolonging drugs are used together. We assessed QT interval prolongation in children with RR-TB receiving one or more QT-prolonging drugs. Data were obtained from two prospective observational studies in Cape Town, South Africa. Electrocardiograms were performed before and after drug administration of clofazimine (CFZ), levofloxacin (LFX), moxifloxacin (MFX), bedaquiline (BDQ), and delamanid. The change in Fridericia-corrected QT (QTcF) was modeled. Drug and other covariate effects were quantified. A total of 88 children with a median (2.5th-to-97.5th range) age of 3.9 (0.5 to 15.7) years were included, of whom 55 (62.5%) were under 5 years of age. A QTcF interval of >450 ms was observed in 7 patient-visits: regimens were CFZ+MFX (n = 3), CFZ+BDQ+LFX (n = 2), CFZ alone (n = 1), and MFX alone (n = 1). There were no events with a QTcF interval of >500 ms. In a multivariate analysis, CFZ+MFX was associated with a 13.0-ms increase in change in QTcF (P < 0.001) and in maximum QTcF (P = 0.0166) compared to those when other MFX- or LFX-based regimens were used. In conclusion, we found a low risk of QTcF interval prolongation in children with RR-TB who received at least one QT-prolonging drug. Greater increases in maximum QTcF and ΔQTcF were observed when MFX and CFZ were used together. Future studies characterizing exposure-QTcF responses in children will be helpful to ensure safety with higher doses if required for effective treatment of RR-TB.


Assuntos
Antituberculosos , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Criança , Pré-Escolar , Adolescente , Antituberculosos/efeitos adversos , Rifampina/uso terapêutico , África do Sul , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Clofazimina/uso terapêutico , Levofloxacino/uso terapêutico , Eletrocardiografia
14.
Eur Respir J ; 62(2)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37321622

RESUMO

BACKGROUND: Phase 2a trials in tuberculosis typically use early bactericidal activity (EBA), the decline in sputum CFU over 14 days, as the primary end-point for testing the efficacy of drugs as monotherapy. However, the cost of phase 2a trials can range from USD 7 million to USD 19.6 million on average, while >30% of drugs fail to progress to phase 3. Better utilising pre-clinical data to predict and prioritise the most likely drugs to succeed will thus help to accelerate drug development and reduce costs. We aim to predict clinical EBA using pre-clinical in vivo pharmacokinetic (PK)-pharmacodynamic (PD) data and a model-based translational pharmacology approach. METHODS AND FINDINGS: First, mouse PK, PD and clinical PK models were compiled. Second, mouse PK-PD models were built to derive an exposure-response relationship. Third, translational prediction of clinical EBA studies was performed using mouse PK-PD relationships and informed by clinical PK models and species-specific protein binding. Presence or absence of clinical efficacy was accurately predicted from the mouse model. Predicted daily decreases of CFU in the first 2 days of treatment and between day 2 and day 14 were consistent with clinical observations. CONCLUSION: This platform provides an innovative solution to inform or even replace phase 2a EBA trials, to bridge the gap between mouse efficacy studies and phase 2b and phase 3 trials, and to substantially accelerate drug development.


Assuntos
Antituberculosos , Tuberculose , Animais , Camundongos , Antituberculosos/uso terapêutico , Antituberculosos/farmacocinética , Modelos Animais de Doenças , Tuberculose/tratamento farmacológico
15.
Bull World Health Organ ; 101(11): 730-737, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37961060

RESUMO

The World Health Organization has developed target product profiles containing minimum and optimum targets for key characteristics for tests for tuberculosis treatment monitoring and optimization. Tuberculosis treatment optimization refers to initiating or switching to an effective tuberculosis treatment regimen that results in a high likelihood of a good treatment outcome. The target product profiles also cover tests of cure conducted at the end of treatment. The development of the target product profiles was informed by a stakeholder survey, a cost-effectiveness analysis and a patient-care pathway analysis. Additional feedback from stakeholders was obtained by means of a Delphi-like process, a technical consultation and a call for public comment on a draft document. A scientific development group agreed on the final targets in a consensus meeting. For characteristics rated of highest importance, the document lists: (i) high diagnostic accuracy (sensitivity and specificity); (ii) time to result of optimally ≤ 2 hours and no more than 1 day; (iii) required sample type to be minimally invasive, easily obtainable, such as urine, breath, or capillary blood, or a respiratory sample that goes beyond sputum; (iv) ideally the test could be placed at a peripheral-level health facility without a laboratory; and (v) the test should be affordable to low- and middle-income countries, and allow wide and equitable access and scale-up. Use of these target product profiles should facilitate the development of new tuberculosis treatment monitoring and optimization tests that are accurate and accessible for all people being treated for tuberculosis.


L'Organisation mondiale de la santé a élaboré des profils de produits cibles contenant des cibles minimales et optimales pour les caractéristiques principales des essais destinés au suivi et à l'optimisation du traitement de la tuberculose. L'optimisation du traitement de la tuberculose fait référence à l'instauration d'un régime de traitement efficace de la tuberculose ou à l'adoption d'un tel régime, avec une probabilité élevée d'obtenir de bons résultats thérapeutiques. Les profils de produits cibles couvrent également les essais de guérison effectués à l'issue du traitement. Les profils de produits cibles ont été élaborés sur la base d'un sondage auprès des parties prenantes, d'une analyse coût-efficacité et d'une analyse du parcours de soins du patient. Des retours supplémentaires des parties prenantes ont été obtenus au moyen d'un processus créé selon la méthode Delphi, d'une consultation technique et d'un appel à commentaires publics sur un projet de document. Un groupe d'élaboration scientifique s'est mis d'accord sur les objectifs finaux lors d'une réunion de concertation. En ce qui concerne les caractéristiques jugées les plus importantes, le document énumère ce qui suit: (i) une grande précision diagnostique (sensibilité et spécificité); (ii) un délai idéal d'obtention des résultats ≤ 2 heures et au maximum de 1 jour; (iii) le type d'échantillon requis doit être peu invasif et facile à obtenir, comme l'urine, l'haleine ou le sang capillaire, ou bien un échantillon respiratoire au-delà des expectorations; (iv) idéalement, l'essai pourrait avoir lieu dans un établissement de santé périphérique sans laboratoire ; et (v) l'essai devrait être abordable pour les pays à revenu faible et intermédiaire et permettre un accès large et équitable ainsi qu'une mise à l'échelle. L'utilisation de ces profils de produits cibles devrait faciliter la mise au point de nouveaux essais de surveillance et d'optimisation du traitement de la tuberculose qui soient précis et accessibles à toutes les personnes suivant un traitement pour la tuberculose.


La Organización Mundial de la Salud ha elaborado perfiles de productos objetivo que contienen objetivos mínimos y óptimos para las características principales de las pruebas de seguimiento y optimización del tratamiento de la tuberculosis. La optimización del tratamiento de la tuberculosis consiste en iniciar o cambiar a un régimen eficaz de tratamiento de la tuberculosis que ofrezca una alta probabilidad de un buen resultado terapéutico. Los perfiles de productos objetivo también abarcan las pruebas de curación realizadas al final del tratamiento. La elaboración de los perfiles de los productos objetivo se basó en una encuesta a las partes interesadas, un análisis de rentabilidad y un análisis de la vía de atención al paciente. Se obtuvo información adicional de las partes interesadas mediante un proceso tipo Delphi, una consulta técnica y una convocatoria de comentarios públicos sobre un borrador del documento. Un grupo de desarrollo científico acordó los objetivos finales en una reunión de consenso. Para las características clasificadas de mayor importancia, el documento enumera: (i) alta precisión diagnóstica (sensibilidad y especificidad); (ii) tiempo hasta el resultado de óptimamente ≤ 2 horas y no más de 1 día; (iii) el tipo de muestra requerida debe ser mínimamente invasiva, fácil de obtener, como orina, aliento o sangre capilar, o una muestra respiratoria que vaya más allá del esputo; (iv) idealmente la prueba podría realizarse en un centro sanitario periférico sin laboratorio; y (v) la prueba debe ser asequible para los países de ingresos bajos y medios y permitir un acceso amplio y equitativo y su expansión. El uso de estos perfiles de producto objetivo debería facilitar el desarrollo de pruebas nuevas de seguimiento y optimización del tratamiento de la tuberculosis que sean precisas y accesibles para todas las personas que reciben tratamiento antituberculoso.


Assuntos
Líquidos Corporais , Tuberculose , Humanos , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico , Sensibilidade e Especificidade , Organização Mundial da Saúde , Escarro
16.
Clin Infect Dis ; 74(9): 1604-1613, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-34323955

RESUMO

BACKGROUND: Pregnancy increases the risk of tuberculosis and its complications. A 3-month regimen of weekly isoniazid and rifapentine (3HP) is safe and effective for tuberculosis prevention in adults and children, including those with HIV, but 3HP has not been evaluated in pregnancy. METHODS: IMPAACT 2001 was a phase I/II trial evaluating the pharmacokinetics and safety of 3HP among pregnant women with indications for tuberculosis preventative therapy in Haiti, Kenya, Malawi, Thailand, and Zimbabwe (NCT02651259). Isoniazid and rifapentine were provided at standard doses (900 mg/week). Pharmacokinetic sampling was performed with the first (second/third trimester) and twelfth (third trimester/postpartum) doses. Nonlinear mixed-effects models were used to estimate drug population pharmacokinetics. RESULTS: Of 50 participants, 20 had HIV and were taking efavirenz-based antiretroviral therapy. Among women without HIV, clearance of rifapentine was 28% lower during pregnancy than postpartum (1.20 vs 1.53 L/hour, P < .001), with area under the concentration-time curve (AUCSS) of 786 and 673 mg × hour/L, respectively. In pregnant women with HIV, clearance was 30% higher than women without HIV (P < .001), resulting in lower AUCss (522 mg × hour/L); clearance did not change significantly between pregnancy and postpartum. Pregnancy did not impact isoniazid pharmacokinetics. There were no drug-related serious adverse events, treatment discontinuations, or tuberculosis cases in women or infants. CONCLUSIONS: 3HP does not require dose adjustment in pregnancy. Rifapentine clearance is higher among women with HIV, but all women achieved exposures of rifapentine and isoniazid associated with successful tuberculosis prevention. The data support proceeding with larger safety-focused studies of 3HP in pregnancy. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov, NCT02651259.


Assuntos
Infecções por HIV , Tuberculose Latente , Tuberculose , Adulto , Antituberculosos/efeitos adversos , Criança , Quimioterapia Combinada , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Humanos , Isoniazida/efeitos adversos , Tuberculose Latente/tratamento farmacológico , Masculino , Gravidez , Gestantes , Rifampina/análogos & derivados , Tuberculose/complicações , Tuberculose/tratamento farmacológico , Tuberculose/prevenção & controle
17.
Antimicrob Agents Chemother ; 66(4): e0231021, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35311519

RESUMO

Murine tuberculosis drug efficacy studies have historically monitored bacterial burden based on CFU of Mycobacterium tuberculosis in lung homogenate. In an alternative approach, a recently described molecular pharmacodynamic marker called the RS ratio quantifies drug effect on a fundamental cellular process, ongoing rRNA synthesis. Here, we evaluated the ability of different pharmacodynamic markers to distinguish between treatments in three BALB/c mouse experiments at two institutions. We confirmed that different pharmacodynamic markers measure distinct biological responses. We found that a combination of pharmacodynamic markers distinguishes between treatments better than any single marker. The combination of the RS ratio with CFU showed the greatest ability to recapitulate the rank order of regimen treatment-shortening activity, providing proof of concept that simultaneous assessment of pharmacodynamic markers measuring different properties will enhance insight gained from animal models and accelerate development of new combination regimens. These results suggest potential for a new era in which antimicrobial therapies are evaluated not only on culture-based measures of bacterial burden but also on molecular assays that indicate how drugs impact the physiological state of the pathogen.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Modelos Animais de Doenças , Quimioterapia Combinada , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
18.
Am J Respir Crit Care Med ; 204(11): 1317-1326, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34375564

RESUMO

Rationale: Standardized dosing of antitubercular drugs contributes to a substantial incidence of toxicities, inadequate treatment response, and relapse, in part due to variable drug concentrations achieved. SNPs in the NAT2 (N-acetyltransferase-2) gene explain the majority of interindividual pharmacokinetic variability of isoniazid (INH). However, an obstacle to implementing pharmacogenomic-guided dosing is the lack of a point-of-care assay. Objectives: To develop and test a NAT2 classification algorithm, validate its performance in predicting isoniazid clearance, and develop a prototype pharmacogenomic assay. Methods: We trained random forest models to predict NAT2 acetylation genotype from unphased SNP data using a global collection of 8,561 phased genomes. We enrolled 48 patients with pulmonary tuberculosis, performed sparse pharmacokinetic sampling, and tested the acetylator prediction algorithm accuracy against estimated INH clearance. We then developed a cartridge-based multiplex quantitative PCR assay on the GeneXpert platform and assessed its analytical sensitivity on whole blood samples from healthy individuals. Measurements and Main Results: With a 5-SNP model trained on two-thirds of the data (n = 5,738), out-of-sample acetylation genotype prediction accuracy on the remaining third (n = 2,823) was 100%. Among the 48 patients with tuberculosis, predicted acetylator types were 27 (56.2%) slow, 16 (33.3%) intermediate, and 5 (10.4%) rapid. INH clearance rates were lowest in predicted slow acetylators (median 14.5 L/h), moderate in intermediate acetylators (median 40.3 L/h), and highest in fast acetylators (median 53.0 L/h). The cartridge-based assay accurately detected all allele patterns directly from 25 µl of whole blood. Conclusions: An automated pharmacogenomic assay on a platform widely used globally for tuberculosis diagnosis could enable personalized dosing of INH.


Assuntos
Antituberculosos/farmacocinética , Arilamina N-Acetiltransferase/genética , Isoniazida/farmacocinética , Testes Farmacogenômicos , Polimorfismo Genético/genética , Tuberculose Pulmonar/genética , Algoritmos , Antituberculosos/administração & dosagem , Estudos de Coortes , Genótipo , Humanos , Isoniazida/administração & dosagem , Reação em Cadeia da Polimerase Multiplex , Farmacogenética , Valor Preditivo dos Testes , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/metabolismo
19.
J Infect Dis ; 223(11): 1855-1864, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31993638

RESUMO

BACKGROUND: Linezolid (LZD) is bactericidal against Mycobacterium tuberculosis, but it has treatment-limiting toxicities. A better understanding of exposure-response relationships governing LZD efficacy and toxicity will inform dosing strategies. Because in vitro monotherapy studies yielded conflicting results, we explored LZD pharmacokinetic/pharmacodynamic (PK/PD) relationships in vivo against actively and nonactively multiplying bacteria, including in combination with pretomanid. METHODS: Linezolid multidose pharmacokinetics were modeled in mice. Dose-fractionation studies were performed in acute (net bacterial growth) and chronic (no net growth) infection models. In acute models, LZD was administered alone or with bacteriostatic or bactericidal pretomanid doses. Correlations between PK/PD parameters and lung colony-forming units (CFUs) and complete blood counts were assessed. RESULTS: Overall, time above minimum inhibitory concentration (T>MIC) correlated best with CFU decline. However, in growth-constrained models (ie, chronic infection, coadministration with pretomanid 50 mg/kg per day), area under the concentration-time curve over MIC (AUC/MIC) had similar explanatory power. Red blood cell counts correlated strongly with LZD minimum concentration (Cmin). CONCLUSIONS: Although T>MIC was the most consistent correlate of efficacy, AUC/MIC was equally predictive when bacterial multiplication was constrained by host immunity or pretomanid. In effective combination regimens, administering the same total LZD dose less frequently may be equally effective and cause less Cmin-dependent toxicity.


Assuntos
Antibacterianos , Linezolida , Infecção Persistente , Tuberculose , Animais , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Área Sob a Curva , Modelos Animais de Doenças , Linezolida/farmacologia , Linezolida/toxicidade , Camundongos , Testes de Sensibilidade Microbiana , Tuberculose/tratamento farmacológico
20.
Clin Infect Dis ; 72(6): 1067-1073, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32594142

RESUMO

Clinical trials of pharmacologic treatments of coronavirus disease 2019 (COVID-19) are being rapidly designed and implemented in adults. Children are often not considered during development of novel treatments for infectious diseases until very late. Although children appear to have a lower risk compared with adults of severe COVID-19 disease, a substantial number of children globally will benefit from pharmacologic treatments. It will be reasonable to extrapolate efficacy of most treatments from adult trials to children. Pediatric trials should focus on characterizing a treatment's pharmacokinetics, optimal dose, and safety across the age spectrum. These trials should use an adaptive design to efficiently add or remove arms in what will be a rapidly evolving treatment landscape, and should involve a large number of sites across the globe in a collaborative effort to facilitate efficient implementation. All stakeholders must commit to equitable access to any effective, safe treatment for children everywhere.


Assuntos
COVID-19 , Adulto , Criança , Humanos , Projetos de Pesquisa , SARS-CoV-2 , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA