Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 544(7649): 212-216, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28406198

RESUMO

Epithelial tissues (epithelia) remove excess cells through extrusion, preventing the accumulation of unnecessary or pathological cells. The extrusion process can be triggered by apoptotic signalling, oncogenic transformation and overcrowding of cells. Despite the important linkage of cell extrusion to developmental, homeostatic and pathological processes such as cancer metastasis, its underlying mechanism and connections to the intrinsic mechanics of the epithelium are largely unexplored. We approach this problem by modelling the epithelium as an active nematic liquid crystal (that has a long range directional order), and comparing numerical simulations to strain rate and stress measurements within monolayers of MDCK (Madin Darby canine kidney) cells. Here we show that apoptotic cell extrusion is provoked by singularities in cell alignments in the form of comet-shaped topological defects. We find a universal correlation between extrusion sites and positions of nematic defects in the cell orientation field in different epithelium types. The results confirm the active nematic nature of epithelia, and demonstrate that defect-induced isotropic stresses are the primary precursors of mechanotransductive responses in cells, including YAP (Yes-associated protein) transcription factor activity, caspase-3-mediated cell death, and extrusions. Importantly, the defect-driven extrusion mechanism depends on intercellular junctions, because the weakening of cell-cell interactions in an α-catenin knockdown monolayer reduces the defect size and increases both the number of defects and extrusion rates, as is also predicted by our model. We further demonstrate the ability to control extrusion hotspots by geometrically inducing defects through microcontact printing of patterned monolayers. On the basis of these results, we propose a mechanism for apoptotic cell extrusion: spontaneously formed topological defects in epithelia govern cell fate. This will be important in predicting extrusion hotspots and dynamics in vivo, with potential applications to tissue regeneration and the suppression of metastasis. Moreover, we anticipate that the analogy between the epithelium and active nematic liquid crystals will trigger further investigations of the link between cellular processes and the material properties of epithelia.


Assuntos
Comunicação Celular , Morte Celular , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Cristais Líquidos , Mecanotransdução Celular , Modelos Biológicos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose , Caspase 3/metabolismo , Cães , Junções Intercelulares/metabolismo , Células Madin Darby de Rim Canino , Fatores de Transcrição/metabolismo , alfa Catenina/metabolismo
2.
Nat Mater ; 20(8): 1156-1166, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33603188

RESUMO

Actomyosin machinery endows cells with contractility at a single-cell level. However, within a monolayer, cells can be contractile or extensile based on the direction of pushing or pulling forces exerted by their neighbours or on the substrate. It has been shown that a monolayer of fibroblasts behaves as a contractile system while epithelial or neural progentior monolayers behave as an extensile system. Through a combination of cell culture experiments and in silico modelling, we reveal the mechanism behind this switch in extensile to contractile as the weakening of intercellular contacts. This switch promotes the build-up of tension at the cell-substrate interface through an increase in actin stress fibres and traction forces. This is accompanied by mechanotransductive changes in vinculin and YAP activation. We further show that contractile and extensile differences in cell activity sort cells in mixtures, uncovering a generic mechanism for pattern formation during cell competition, and morphogenesis.


Assuntos
Actomiosina/metabolismo , Fenômenos Mecânicos , Fenômenos Biomecânicos , Movimento Celular , Simulação por Computador , Modelos Biológicos
3.
J Cell Sci ; 131(24)2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30573527

RESUMO

In various physiological processes, the cell collective is organized in a monolayer, such as seen in a simple epithelium. The advances in the understanding of mechanical behavior of the monolayer and its underlying cellular and molecular mechanisms will help to elucidate the properties of cell collectives. In this Review, we discuss recent in vitro studies on monolayer mechanics and their implications on collective dynamics, regulation of monolayer mechanics by physical confinement and geometrical cues and the effect of tissue mechanics on biological processes, such as cell division and extrusion. In particular, we focus on the active nematic property of cell monolayers and the emerging approach to view biological systems in the light of liquid crystal theory. We also highlight the mechanosensing and mechanotransduction mechanisms at the sub-cellular and molecular level that are mediated by the contractile actomyosin cytoskeleton and cell-cell adhesion proteins, such as E-cadherin and α-catenin. To conclude, we argue that, in order to have a holistic understanding of the cellular response to biophysical environments, interdisciplinary approaches and multiple techniques - from large-scale traction force measurements to molecular force protein sensors - must be employed.


Assuntos
Junções Aderentes/metabolismo , Caderinas/metabolismo , Adesão Celular/fisiologia , Mecanotransdução Celular/fisiologia , Actomiosina/metabolismo , Animais , Citoesqueleto/metabolismo , Humanos
5.
Int J Biochem Cell Biol ; 161: 106432, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37290687

RESUMO

The forces that cells, tissues, and organisms exert on the surface of a soft substrate can be measured using Traction Force Microscopy (TFM), an important and well-established technique in Mechanobiology. The usual TFM technique (two-dimensional, 2D TFM) treats only the in-plane component of the traction forces and omits the out-of-plane forces at the substrate interfaces (2.5D) that turn out to be important in many biological processes such as tissue migration and tumour invasion. Here, we review the imaging, material, and analytical tools to perform "2.5D TFM" and explain how they are different from 2D TFM. Challenges in 2.5D TFM arise primarily from the need to work with a lower imaging resolution in the z-direction, track fiducial markers in three-dimensions, and reliably and efficiently reconstruct mechanical stress from substrate deformation fields. We also discuss how 2.5D TFM can be used to image, map, and understand the complete force vectors in various important biological events of various length-scales happening at two-dimensional interfaces, including focal adhesions forces, cell diapedesis across tissue monolayers, the formation of three-dimensional tissue structures, and the locomotion of large multicellular organisms. We close with future perspectives including the use of new materials, imaging and machine learning techniques to continuously improve the 2.5D TFM in terms of imaging resolution, speed, and faithfulness of the force reconstruction procedure.


Assuntos
Fenômenos Mecânicos , Tração , Microscopia de Força Atômica/métodos , Adesões Focais , Estresse Mecânico , Adesão Celular
6.
Sci Adv ; 8(37): eabn5406, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36103541

RESUMO

Three-dimensional collective epithelial rotation around a given axis represents a coordinated cellular movement driving tissue morphogenesis and transformation. Questions regarding these behaviors and their relationship with substrate curvatures are intimately linked to spontaneous active matter processes and to vital morphogenetic and embryonic processes. Here, using interdisciplinary approaches, we study the dynamics of epithelial layers lining different cylindrical surfaces. We observe large-scale, persistent, and circumferential rotation in both concavely and convexly curved cylindrical tissues. While epithelia of inverse curvature show an orthogonal switch in actomyosin network orientation and opposite apicobasal polarities, their rotational movements emerge and vary similarly within a common curvature window. We further reveal that this persisting rotation requires stable cell-cell adhesion and Rac-1-dependent cell polarity. Using an active polar gel model, we unveil the different relationships of collective cell polarity and actin alignment with curvatures, which lead to coordinated rotational behavior despite the inverted curvature and cytoskeleton order.

7.
STAR Protoc ; 1(2): 100098, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-33111126

RESUMO

Cellular traction forces influence epithelial behavior, including wound healing and cell extrusion. Here, we describe a simple in vitro traction force microscopy (TFM) protocol using ECM protein-coated polydimethylsiloxane substrate and widefield fluorescence microscopy. We include detailed steps for analysis so readers can obtain traction forces to study the mechanobiology of epithelial cells. We also provide guidelines on when to adopt another common class of TFM protocols based on polyacrylamide hydrogels. For complete details on the use and execution of this protocol, please refer to Saw et al. (2017) and Teo et al. (2020).


Assuntos
Biofísica/métodos , Microscopia de Força Atômica/métodos , Microscopia de Fluorescência/métodos , Fenômenos Biomecânicos/fisiologia , Adesão Celular , Técnicas de Cultura de Células , Dimetilpolisiloxanos/química , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular , Fenômenos Mecânicos , Mecanotransdução Celular , Estresse Mecânico , Tração
8.
Adv Mater ; 30(47): e1802579, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30156334

RESUMO

Live tissues can self-organize and be described as active materials composed of cells that generate active stresses through continuous injection of energy. In vitro reconstituted molecular networks, as well as single-cell cytoskeletons show that their filamentous structures can portray nematic liquid crystalline properties and can promote nonequilibrium processes induced by active processes at the microscale. The appearance of collective patterns, the formation of topological singularities, and spontaneous phase transition within the cell cytoskeleton are emergent properties that drive cellular functions. More integrated systems such as tissues have cells that can be seen as coarse-grained active nematic particles and their interaction can dictate many important tissue processes such as epithelial cell extrusion and migration as observed in vitro and in vivo. Here, a brief introduction to the concept of active nematics is provided, and the main focus is on the use of this framework in the systematic study of predominantly 2D tissue architectures and dynamics in vitro. In addition how the nematic state is important in tissue behavior, such as epithelial expansion, tissue homeostasis, and the atherosclerosis disease state, is discussed. Finally, how the nematic organization of cells can be controlled in vitro for tissue engineering purposes is briefly discussed.


Assuntos
Cristais Líquidos , Modelos Biológicos , Fenômenos Fisiológicos Celulares , Humanos
9.
Curr Biol ; 26(21): 2942-2950, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27746027

RESUMO

The control of tissue growth, which is a key to maintain the protective barrier function of the epithelium, depends on the balance between cell division and cell extrusion rates [1, 2]. Cells within confluent epithelial layers undergo cell extrusion, which relies on cell-cell interactions [3] and actomyosin contractility [4, 5]. Although it has been reported that cell extrusion is also dependent on cell density [6, 7], the contribution of tissue mechanics, which is tightly regulated by cell density [8-12], to cell extrusion is still poorly understood. By measuring the multicellular dynamics and traction forces, we show that changes in epithelial packing density lead to the emergence of distinct modes of cell extrusion. In confluent epithelia with low cell density, cell extrusion is mainly driven by the lamellipodia-based crawling mechanism in the neighbor non-dying cells in connection with large-scale collective movements. As cell density increases, cell motion is shown to slow down, and the role of a supracellular actomyosin cable formation and its contraction in the neighboring cells becomes the preponderant mechanism to locally promote cell extrusion. We propose that these two distinct mechanisms complement each other to ensure proper cell extrusion depending on the cellular environment. Our study provides a quantitative and robust framework to explain how cell density can influence tissue mechanics and in turn regulate cell extrusion mechanisms.


Assuntos
Comunicação Celular , Células Epiteliais/fisiologia , Animais , Contagem de Células , Cães , Células Madin Darby de Rim Canino
10.
Integr Biol (Camb) ; 7(10): 1228-41, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26402903

RESUMO

Collective migration of cells is of fundamental importance for a number of biological functions such as tissue development and regeneration, wound healing and cancer metastasis. The movement of cell groups consisting of multiple cells connected by cell-cell junctions depends on both extracellular and intercellular contacts. Epithelial cell assemblies are thus regulated by a cross-talk between cell-substrate and cell-cell interactions. Here, we investigated the onset of collective migration in groups of cells as they expand from a few cells into large colonies as a function of extracellular matrix (ECM) protein coating. By varying the amount of ECM presented to the cells, we observe that the mode of colony expansion, as well as their overall geometry, is strongly dependent on substrate adhesiveness. On high ECM protein coated surfaces, cells at the edges of the colonies are well spread exhibiting large outward-pointing protrusive activity, whereas cellular colonies display more circular and convex shapes on less adhesive surfaces. Actin structures at the edge of the colonies also show different organizations with the formation of lamellipodial structures on highly adhesive surfaces and a pluricellular actin cable on less adhesive ones. The analysis of traction forces and cell velocities within the cellular assemblies confirm these results. By increasing ECM protein density, cells exert higher traction forces together with a higher outward motility at the edges. Furthermore, tuning cell-cell adhesion of epithelial cells modified the mode of expansion of the colonies. Finally, we used a recently developed computational model to recapitulate the emergent experimental behaviors of expanding cell colonies and extract that the main effect of the different cell-substrate interactions is on the ability of edge cells to form outward lamellipodia-driven motility. Overall, our data suggest that switching behaviors of epithelial cell assemblies result in a tug-of-war between friction forces at the cell-substrate interface and cell-cell interactions.


Assuntos
Adesão Celular/fisiologia , Movimento Celular/fisiologia , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Actomiosina/fisiologia , Animais , Fenômenos Biomecânicos , Comunicação Celular/fisiologia , Materiais Revestidos Biocompatíveis , Simulação por Computador , Cães , Proteínas da Matriz Extracelular/fisiologia , Fibronectinas/fisiologia , Células Madin Darby de Rim Canino , Microscopia de Força Atômica , Modelos Biológicos , Pseudópodes/fisiologia , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA