Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Anim Ecol ; 92(3): 677-689, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36598334

RESUMO

Fences have recently been recognized as one of the most prominent linear infrastructures on earth. As animals traverse fenced landscapes, they adjust movement behaviours to optimize resource access while minimizing energetic costs of coping with fences. Examining individual responses is key for connecting localized fence effects with population dynamics. We investigated the multi-scale effects of fencing on animal movements, space use and survival of 61 pronghorn and 96 mule deer on a gradient of fence density in Wyoming, USA. Taking advantage of the recently developed Barrier Behaviour Analysis, we classified individual movement responses upon encountering fences (i.e. barrier behaviours). We adopted the reaction norm framework to jointly quantify individual plasticity and behavioural types of barrier behaviours, as well as behaviour syndromes between barrier behaviours and animal space use. We also assessed whether barrier behaviours affect individual survival. Our results highlighted a high-level individual plasticity encompassing differences in the degree and direction of barrier behaviours for both pronghorn and mule deer. Additionally, these individual differences were greater at higher fence densities. For mule deer, fence density determined the correlation between barrier behaviours and space use and was negatively associated with individual survival. However, these relationships were not statistically significant for pronghorn. By integrating approaches from movement ecology and behavioural ecology with the emerging field of fence ecology, this study provides new evidence that an extraordinarily widespread linear infrastructure uniquely impacts animals at the individual level. Managing landscape for lower fence densities may help prevent irreversible behavioural shifts for wide-ranging animals in fenced landscapes.


Assuntos
Cervos , Individualidade , Animais , Ecologia , Dinâmica Populacional , Equidae , Movimento
2.
Ecol Appl ; 32(7): e2652, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35543078

RESUMO

While migrating, animals make directionally persistent movements and may only respond to human-induced rapid environmental change (HIREC), such as climate and land-use change, once a threshold of HIREC is surpassed. In contrast, animals on other seasonal ranges (e.g., winter range) make more localized and tortuous movements while foraging and may have the flexibility to adjust the location of their range and the intensity of use within it to minimize interactions with HIREC. Because of these seasonal differences in movement, animals on seasonal ranges should avoid areas that contain any level of HIREC, however, during migration, animals should use areas that contain low levels of HIREC, avoiding it only once a threshold of HIREC has been surpassed. We tested this hypothesis using a decade of GPS collar data collected from migratory mule deer (Odocoileus hemionus; n = 56 migration, 143 winter) and pronghorn (Antilocapra americana; n = 70 migration, 89 winter) that winter on and migrate through a natural gas field in western Wyoming. Using surface disturbance caused by well pads and roads as an index of HIREC, we evaluated behavioral responses across three spatial scales during winter and migration seasons. During migration, both species tolerated low levels of disturbance. Once a disturbance threshold was surpassed, however, they avoided HIREC. For mule deer, thresholds were consistently ~3%, whereas thresholds for pronghorn ranged from 1% to 9.25% surface disturbance. In contrast to migration, both species generally avoided all levels of HIREC while on winter range. Our study suggests that animal responses to HIREC are mediated by season-specific movement patterns. Our results provide further evidence of ungulates avoiding human disturbance on winter range and reveal disturbance thresholds that trigger mule deer and pronghorn responses during migration: information that managers can use to maintain the ecological function of migration routes and winter ranges.


Assuntos
Cervos , Animais , Cervos/fisiologia , Ecossistema , Equidae , Humanos , Gás Natural , Ruminantes , Estações do Ano
3.
Ecol Lett ; 24(10): 2178-2191, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34311513

RESUMO

The forage maturation hypothesis (FMH) states that energy intake for ungulates is maximised when forage biomass is at intermediate levels. Nevertheless, metabolic allometry and different digestive systems suggest that resource selection should vary across ungulate species. By combining GPS relocations with remotely sensed data on forage characteristics and surface water, we quantified the effect of body size and digestive system in determining movements of 30 populations of hindgut fermenters (equids) and ruminants across biomes. Selection for intermediate forage biomass was negatively related to body size, regardless of digestive system. Selection for proximity to surface water was stronger for equids relative to ruminants, regardless of body size. To be more generalisable, we suggest that the FMH explicitly incorporate contingencies in body size and digestive system, with small-bodied ruminants selecting more strongly for potential energy intake, and hindgut fermenters selecting more strongly for surface water.


Assuntos
Sistema Digestório , Ruminantes , Animais , Tamanho Corporal
4.
J Anim Ecol ; 90(4): 955-966, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33481254

RESUMO

While the tendency to return to previously visited locations-termed 'site fidelity'-is common in animals, the cause of this behaviour is not well understood. One hypothesis is that site fidelity is shaped by an animal's environment, such that animals living in landscapes with predictable resources have stronger site fidelity. Site fidelity may also be conditional on the success of animals' recent visits to that location, and it may become stronger with age as the animal accumulates experience in their landscape. Finally, differences between species, such as the way memory shapes site attractiveness, may interact with environmental drivers to modulate the strength of site fidelity. We compared inter-year site fidelity in 669 individuals across eight ungulate species fitted with GPS collars and occupying a range of environmental conditions in North America and Africa. We used a distance-based index of site fidelity and tested hypothesized drivers of site fidelity using linear mixed effects models, while accounting for variation in annual range size. Mule deer Odocoileus hemionus and moose Alces alces exhibited relatively strong site fidelity, while wildebeest Connochaetes taurinus and barren-ground caribou Rangifer tarandus granti had relatively weak fidelity. Site fidelity was strongest in predictable landscapes where vegetative greening occurred at regular intervals over time (i.e. high temporal contingency). Species differed in their response to spatial heterogeneity in greenness (i.e. spatial constancy). Site fidelity varied seasonally in some species, but remained constant over time in others. Elk employed a 'win-stay, lose-switch' strategy, in which successful resource tracking in the springtime resulted in strong site fidelity the following spring. Site fidelity did not vary with age in any species tested. Our results provide support for the environmental hypothesis, particularly that regularity in vegetative phenology shapes the strength of site fidelity at the inter-annual scale. Large unexplained differences in site fidelity suggest that other factors, possibly species-specific differences in attraction to known sites, contribute to variation in the expression of this behaviour. Understanding drivers of variation in site fidelity across groups of organisms living in different environments provides important behavioural context for predicting how animals will respond to environmental change.


Assuntos
Cervos , Rena , África , Animais , Ecossistema , América do Norte
5.
Ecol Lett ; 22(11): 1797-1805, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31412429

RESUMO

From fine-scale foraging to broad-scale migration, animal movement is shaped by the distribution of resources. There is mounting evidence, however, that learning and memory also guide movement. Although migratory mammals commonly track resource waves, how resource tracking and memory guide long-distance migration has not been reconciled. We examined these hypotheses using movement data from four populations of migratory mule deer (n = 91). Spatial memory had an extraordinary influence on migration, affecting movement 2-28 times more strongly than tracking spring green-up or autumn snow depth. Importantly, with only an ability to track resources, simulated deer were unable to recreate empirical migratory routes. In contrast, simulated deer with memory of empirical routes used those routes and obtained higher foraging benefits. For migratory terrestrial mammals, spatial memory provides knowledge of where seasonal ranges and migratory routes exist, whereas resource tracking determines when to beneficially move within those areas.


Assuntos
Cervos , Herbivoria , Migração Animal , Animais , Ecossistema , Memória Espacial
6.
Ecol Appl ; 29(7): e01972, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31301178

RESUMO

The availability and quality of forage on the landscape constitute the foodscape within which animals make behavioral decisions to acquire food. Novel changes to the foodscape, such as human disturbance, can alter behavioral decisions that favor avoidance of perceived risk over food acquisition. Although behavioral changes and population declines often coincide with the introduction of human disturbance, the link(s) between behavior and population trajectory are difficult to elucidate. To identify a pathway by which human disturbance may affect ungulate populations, we tested the Behaviorally Mediated Forage-Loss Hypothesis, wherein behavioral avoidance is predicted to reduce use of available forage adjacent to disturbance. We used GPS collar data collected from migratory mule deer (Odocoileus hemionus) to evaluate habitat selection, movement patterns, and time-budgeting behavior in response to varying levels of forage availability and human disturbance in three different populations exposed to a gradient of energy development. Subsequently, we linked animal behavior with measured use of forage relative to human disturbance, forage availability, and quality. Mule deer avoided human disturbance at both home range and winter range scales, but showed negligible differences in vigilance rates at the site level. Use of the primary winter forage, sagebrush (Artemisia tridentata), increased as production of new annual growth increased but use decreased with proximity to disturbance. Consequently, avoidance of human disturbance prompted loss of otherwise available forage, resulting in indirect habitat loss that was 4.6-times greater than direct habitat loss from roads, well pads, and other infrastructure. The multiplicative effects of indirect habitat loss, as mediated by behavior, impaired use of the foodscape by reducing the amount of available forage for mule deer, a consequence of which may be winter ranges that support fewer animals than they did before development.


Assuntos
Cervos , Animais , Ecossistema , Comportamento de Retorno ao Território Vital , Humanos , Estações do Ano
7.
J Anim Ecol ; 88(3): 450-460, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30449042

RESUMO

The migratory movements of wild animals can promote abundance and support ecosystem functioning. For large herbivores, mounting evidence suggests that migratory behaviour is an individually variable trait, where individuals can easily switch between migrant and resident tactics. The degree of migratory plasticity, including whether and where to migrate, has important implications for the ecology and conservation of large herbivores in a changing world. Mule deer (Odocoileus hemionus) are an iconic species of western North America, but are notably absent from the body of literature that suggests large herbivore migrations are highly plastic. We evaluated plasticity of migration in female mule deer using longitudinal GPS data collected from 312 individuals across nine populations in the western United States, including 882 animal-years (801 migrants and 81 residents). We followed both resident and migratory mule deer through time to determine whether individual animals switched migratory behaviours (i.e., whether to migrate) from migratory to residency or vice versa. Additionally, we examined the fidelity of individuals to their migration routes (i.e., where to migrate) to determine whether they used the same routes year after year. We also evaluated whether age and reproductive status affected propensity to migrate or fidelity to migratory routes. Our results indicate that mule deer, unlike other large herbivores, have little or no plasticity in terms of whether or where they migrate. Resident deer remained residents, and migrant deer remained migrants, regardless of age, reproductive status or number of years monitored. Further, migratory individuals showed strong fidelity (>80%) to their migration routes year after year. Our study clearly shows that migration plasticity is not ubiquitous among large herbivores. Because of their rigid migratory behaviour, mule deer may not adapt to changing environmental conditions as readily as large herbivores with more plastic migratory behaviour (e.g., elk). The fixed migratory behaviours of mule deer make clear that conservation efforts aimed at traditional seasonal ranges and migration routes are warranted for sustaining this iconic species that continues to decline across its range.


Assuntos
Cervos , Herbivoria , Migração Animal , Animais , Ecossistema , Feminino , América do Norte , Estações do Ano
8.
Ecol Appl ; 28(8): 2153-2164, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30329189

RESUMO

Long-distance migration by terrestrial mammals is a phenomenon critical to the persistence of populations, but such migrations are declining globally because of over-harvest, habitat loss, and movement barriers. Increasingly, there is a need to improve existing routes, mitigate route segments affected by anthropogenic disturbance, and in some instances, determine whether alternative routes are available. Using a hypothesis-driven approach, we identified landscape features associated with the primary functional attributes, stopovers and movement corridors, of spring migratory routes for mule deer in two study areas using resource selection functions. Patterns of selection for landscape attributes of movement corridors and stopovers mostly were similar; however, landscape features associated with movement corridors aligned better with areas that facilitated movement, whereas selection of stopovers was consistent with sites offering early access to spring forage. For movement corridors, deer selected for dry sites, low elevation, and low anthropogenic disturbance. For stopovers, deer selected for dry sites, with consistently early green-up across years, south-southwesterly aspects, low elevation, and low anthropogenic disturbance. Stopovers and movement corridors of a migratory route presumably promote different functions, but for a terrestrial migrant, patterns of habitat selection indicate that the same general habitat attributes may facilitate both movement and foraging in spring. Our findings emphasize the roles of topographical wetness, vegetation phenology, and anthropogenic disturbance in shaping use of the landscape during migration for this large herbivore. Avoiding human disturbance and tracking ephemeral forage resources appear to be a consistent pattern during migration, which reinforces the notion that movement during migration has a nutritional underpinning and disturbance potentially alters the net benefits of migration.


Assuntos
Migração Animal , Cervos/fisiologia , Ecossistema , Herbivoria , Animais , Feminino , Estações do Ano
9.
Glob Chang Biol ; 23(11): 4521-4529, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28375581

RESUMO

As the extent and intensity of energy development in North America increases, so do disturbances to wildlife and the habitats they rely upon. Impacts to mule deer are of particular concern because some of the largest gas fields in the USA overlap critical winter ranges. Short-term studies of 2-3 years have shown that mule deer and other ungulates avoid energy infrastructure; however, there remains a common perception that ungulates habituate to energy development, and thus, the potential for a demographic effect is low. We used telemetry data from 187 individual deer across a 17-year period, including 2 years predevelopment and 15 years during development, to determine whether mule deer habituated to natural gas development and if their response to disturbance varied with winter severity. Concurrently, we measured abundance of mule deer to indirectly link behavior with demography. Mule deer consistently avoided energy infrastructure through the 15-year period of development and used habitats that were an average of 913 m further from well pads compared with predevelopment patterns of habitat use. Even during the last 3 years of study, when most wells were in production and reclamation efforts underway, mule deer remained >1 km away from well pads. The magnitude of avoidance behavior, however, was mediated by winter severity, where aversion to well pads decreased as winter severity increased. Mule deer abundance declined by 36% during the development period, despite aggressive onsite mitigation efforts (e.g. directional drilling and liquid gathering systems) and a 45% reduction in deer harvest. Our results indicate behavioral effects of energy development on mule deer are long term and may affect population abundance by displacing animals and thereby functionally reducing the amount of available habitat.


Assuntos
Cervos/fisiologia , Ecossistema , Fontes Geradoras de Energia , Animais , Masculino , América do Norte , Campos de Petróleo e Gás , Estações do Ano
10.
Proc Biol Sci ; 283(1833)2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27335416

RESUMO

The green wave hypothesis (GWH) states that migrating animals should track or 'surf' high-quality forage at the leading edge of spring green-up. To index such high-quality forage, recent work proposed the instantaneous rate of green-up (IRG), i.e. rate of change in the normalized difference vegetation index over time. Despite this important advancement, no study has tested the assumption that herbivores select habitat patches at peak IRG. We evaluated this assumption using step selection functions parametrized with movement data during the green-up period from two populations each of bighorn sheep, mule deer, elk, moose and bison, totalling 463 individuals monitored 1-3 years from 2004 to 2014. Accounting for variables that typically influence habitat selection for each species, we found seven of 10 populations selected patches exhibiting high IRG-supporting the GWH. Nonetheless, large herbivores selected for the leading edge, trailing edge and crest of the IRG wave, indicating that other mechanisms (e.g. ruminant physiology) or measurement error inherent with satellite data affect selection for IRG. Our evaluation indicates that IRG is a useful tool for linking herbivore movement with plant phenology, paving the way for significant advancements in understanding how animals track resource quality that varies both spatially and temporally.


Assuntos
Ecossistema , Herbivoria , Estações do Ano , Migração Animal , Animais , Bison , Cervos , Plantas , Ovinos , Análise Espaço-Temporal
11.
Ecology ; 105(4): e4238, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38212148

RESUMO

Growing evidence supports the hypothesis that temperate herbivores surf the green wave of emerging plants during spring migration. Despite the importance of autumn migration, few studies have conceptualized resource tracking of temperate herbivores during this critical season. We adapted the frost wave hypothesis (FWH), which posits that animals pace their autumn migration to reduce exposure to snow but increase acquisition of forage. We tested the FWH in a population of mule deer in Wyoming, USA by tracking the autumn migrations of n = 163 mule deer that moved 15-288 km from summer to winter range. Migrating deer experienced similar amounts of snow but 1.4-2.1 times more residual forage than if they had naïve knowledge of when or how fast to migrate. Importantly, deer balanced exposure to snow and forage in a spatial manner. At the fine scale, deer avoided snow near their mountainous summer ranges and became more risk prone to snow near winter range. Aligning with their higher tolerance of snow and lingering behavior to acquire residual forage, deer increased stopover use by 1 ± 1 day (95% CI) day for every 10% of their migration completed. Our findings support the prediction that mule deer pace their autumn migration with the onset of snow and residual forage, but refine the FWH to include movement behavior en route that is spatially dynamic.


Assuntos
Cervos , Animais , Migração Animal , Estações do Ano , Herbivoria , Equidae
12.
Ecol Lett ; 16(8): 1023-30, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23750905

RESUMO

Ecological theory predicts that the diffuse risk cues generated by wide-ranging, active predators should induce prey behavioural responses but not major, population- or community-level consequences. We evaluated the non-consumptive effects (NCEs) of an active predator, the grey wolf (Canis lupus), by simultaneously tracking wolves and the behaviour, body fat, and pregnancy of elk (Cervus elaphus), their primary prey in the Greater Yellowstone Ecosystem. When wolves approached within 1 km, elk increased their rates of movement, displacement and vigilance. Even in high-risk areas, however, these encounters occurred only once every 9 days. Ultimately, despite 20-fold variation in the frequency of encounters between wolves and individual elk, the risk of predation was not associated with elk body fat or pregnancy. Our findings suggest that the ecological consequences of actively hunting large carnivores, such as the wolf, are more likely transmitted by consumptive effects on prey survival than NCEs on prey behaviour.


Assuntos
Distribuição Animal , Composição Corporal , Cervos/fisiologia , Cadeia Alimentar , Lobos/fisiologia , Animais , Montana , Estações do Ano , Wyoming
13.
Nat Ecol Evol ; 6(11): 1733-1741, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36202922

RESUMO

The ability to freely move across the landscape to track the emergence of nutritious spring green-up (termed 'green-wave surfing') is key to the foraging strategy of migratory ungulates. Across the vast landscapes traversed by many migratory herds, habitats are being altered by development with unknown consequences for surfing. Using a unique long-term tracking dataset, we found that when energy development occurs within mule deer (Odocoileus hemionus) migration corridors, migrating animals become decoupled from the green wave. During the early phases of a coalbed natural gas development, deer synchronized their movements with peak green-up. But faced with increasing disturbance as development expanded, deer altered their movements by holding up at the edge of the gas field and letting the green wave pass them by. Development often modified only a small portion of the migration corridor but had far-reaching effects on behaviour before and after migrating deer encountered it, thus reducing surfing along the entire route by 38.65% over the 14-year study period. Our study suggests that industrial development within migratory corridors can change the behaviour of migrating ungulates and diminish the benefits of migration. Such disruptions to migratory behaviour present a common mechanism whereby corridors become unprofitable and could ultimately be lost on highly developed landscapes.


Assuntos
Migração Animal , Cervos , Animais , Desenvolvimento Industrial , Ecossistema , Estações do Ano
14.
J Anim Ecol ; 80(5): 1078-87, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21545586

RESUMO

1. Birds that migrate long distances use stopover sites to optimize fuel loads and complete migration as quickly as possible. Stopover use has been predicted to facilitate a time-minimization strategy in land migrants as well, but empirical tests have been lacking, and alternative migration strategies have not been considered. 2. We used fine-scale movement data to evaluate the ecological role of stopovers in migratory mule deer Odocoileus hemionus- a land migrant whose fitness is strongly influenced by energy intake rather than migration speed. 3. Although deer could easily complete migrations (range 18-144 km) in several days, they took an average of 3 weeks and spent 95% of that time in a series of stopover sites that had higher forage quality than movement corridors. Forage quality of stopovers increased with elevation and distance from winter range. Mule deer use of stopovers corresponded with a narrow phenological range, such that deer occupied stopovers 44 days prior to peak green-up, when forage quality was presumed to be highest. Mule deer used one stopover for every 5·3 and 6·7 km travelled during spring and autumn migrations, respectively, and used the same stopovers in consecutive years. 4. Study findings indicate that stopovers play a key role in the migration strategy of mule deer by allowing individuals to migrate in concert with plant phenology and maximize energy intake rather than speed. Our results suggest that stopover use may be more common among non-avian taxa than previously thought and, although the underlying migration strategies of temperate ungulates and birds are quite different, stopover use is important to both. 5. Exploring the role of stopovers in land migrants broadens the scope of stopover ecology and recognizes that the applied and theoretical benefits of stopover ecology need not be limited to avian taxa.


Assuntos
Migração Animal/fisiologia , Cervos , Ingestão de Energia , Comportamento Alimentar , Herbivoria , Animais , Cervos/fisiologia , Ecossistema , Feminino , Sistemas de Informação Geográfica , Modelos Lineares , Modelos Biológicos , Tecnologia de Sensoriamento Remoto , Estações do Ano , Fatores de Tempo
15.
Ecology ; 102(4): e03293, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33554353

RESUMO

Migratory ungulates are thought to be declining globally because their dependence on large landscapes renders them highly vulnerable to environmental change. Yet recent studies reveal that many ungulate species can adjust their migration propensity in response to changing environmental conditions to potentially improve population persistence. In addition to the question of whether to migrate, decisions of where and when to migrate appear equally fundamental to individual migration tactics, but these three dimensions of plasticity have rarely been explored together. Here, we expand the concept of migratory plasticity beyond individual switches in migration propensity to also include spatial and temporal adjustments to migration patterns. We develop a novel typological framework that delineates every potential change type within the three dimensions, then use this framework to guide a literature review. We discuss broad patterns in migratory plasticity, potential drivers of migration change, and research gaps in the current understanding of this trait. Our result reveals 127 migration change events in direct response to natural and human-induced environmental changes across 27 ungulate species. Species that appeared in multiple studies showed multiple types of change, with some exhibiting the full spectrum of migratory plasticity. This result highlights that multidimensional migratory plasticity is pervasive in ungulates, even as the manifestation of plasticity varies case by case. However, studies thus far have rarely been able to determine the fitness outcomes of different types of migration change, likely due to the scarcity of long-term individual-based demographic monitoring as well as measurements encompassing a full behavioral continuum and environmental gradient for any given species. Recognizing and documenting the full spectrum of migratory plasticity marks the first step for the field of migration ecology to employ quantitative methods, such as reaction norms, to predict migration change along environmental gradients. Closer monitoring for changes in migratory propensity, routes, and timing may improve the efficacy of conservation strategies and management actions in a rapidly changing world.


Assuntos
Migração Animal , Cervos , Animais , Ecologia , Humanos , Fenótipo , Estações do Ano
16.
Curr Biol ; 30(17): 3444-3449.e4, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32619482

RESUMO

Animals exhibit a diversity of movement tactics [1]. Tracking resources that change across space and time is predicted to be a fundamental driver of animal movement [2]. For example, some migratory ungulates (i.e., hooved mammals) closely track the progression of highly nutritious plant green-up, a phenomenon called "green-wave surfing" [3-5]. Yet general principles describing how the dynamic nature of resources determine movement tactics are lacking [6]. We tested an emerging theory that predicts surfing and the existence of migratory behavior will be favored in environments where green-up is fleeting and moves sequentially across large landscapes (i.e., wave-like green-up) [7]. Landscapes exhibiting wave-like patterns of green-up facilitated surfing and explained the existence of migratory behavior across 61 populations of four ungulate species on two continents (n = 1,696 individuals). At the species level, foraging benefits were equivalent between tactics, suggesting that each movement tactic is fine-tuned to local patterns of plant phenology. For decades, ecologists have sought to understand how animals move to select habitat, commonly defining habitat as a set of static patches [8, 9]. Our findings indicate that animal movement tactics emerge as a function of the flux of resources across space and time, underscoring the need to redefine habitat to include its dynamic attributes. As global habitats continue to be modified by anthropogenic disturbance and climate change [10], our synthesis provides a generalizable framework to understand how animal movement will be influenced by altered patterns of resource phenology.


Assuntos
Migração Animal/fisiologia , Mudança Climática , Cervos/fisiologia , Ecossistema , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Plantas/metabolismo , Animais , Sistemas de Informação Geográfica , Herbivoria
17.
Ecology ; 90(10): 2956-62, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19886504

RESUMO

Inferences about habitat selection by animals derived from sequences of relocations obtained with global positioning system (GPS) collars can be influenced by GPS fix success. Environmental factors such as dense canopy cover or rugged terrain can reduce GPS fix success, making subsequent modeling problematic if fix success depends on the selected habitat. Ignoring failed fix attempts may affect estimates of model coefficients and lead to incorrect conclusions about habitat selection. Here, we present a habitat selection model that accounts for missing locations due to habitat-induced data losses, called a resource selection function (RSF) for GPS fix success. The model's formulation is similar to adjusting estimates of probability of occupancy when detection is less than 100% in patch occupancy sampling. We demonstrate use of the model with GPS data collected from an adult female mule deer (Odocoileus hemionus) and discuss how to analyze data from multiple animals. In the simulations presented, our habitat selection model was generally unbiased for GPS data sets missing up to 50% of the locations.


Assuntos
Sistemas de Identificação Animal/instrumentação , Cervos/fisiologia , Sistemas de Informação Geográfica , Modelos Biológicos , Migração Animal , Animais , Ecossistema , Feminino
18.
Ecol Appl ; 19(8): 2016-25, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20014575

RESUMO

As habitat loss and fragmentation increase across ungulate ranges, identifying and prioritizing migration routes for conservation has taken on new urgency. Here we present a general framework using the Brownian bridge movement model (BBMM) that: (1) provides a probabilistic estimate of the migration routes of a sampled population, (2) distinguishes between route segments that function as stopover sites vs. those used primarily as movement corridors, and (3) prioritizes routes for conservation based upon the proportion of the sampled population that uses them. We applied this approach to a migratory mule deer (Odocoileus hemionus) population in a pristine area of southwest Wyoming, USA, where 2000 gas wells and 1609 km of pipelines and roads have been proposed for development. Our analysis clearly delineated where migration routes occurred relative to proposed development and provided guidance for on-the-ground conservation efforts. Mule deer migration routes were characterized by a series of stopover sites where deer spent most of their time, connected by movement corridors through which deer moved quickly. Our findings suggest management strategies that differentiate between stopover sites and movement corridors may be warranted. Because some migration routes were used by more mule deer than others, proportional level of use may provide a reasonable metric by which routes can be prioritized for conservation. The methods we outline should be applicable to a wide range of species that inhabit regions where migration routes are threatened or poorly understood.


Assuntos
Migração Animal/fisiologia , Conservação dos Recursos Naturais , Cervos/fisiologia , Ecossistema , Sistemas de Identificação Animal , Animais , Demografia , Feminino , Fatores de Tempo , Wyoming
19.
Conserv Physiol ; 6(1): coy054, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30279991

RESUMO

Rapid climate and human land-use change may limit the ability of long-distance migratory herbivores to optimally track or 'surf' high-quality forage during spring green-up. Understanding how anthropogenic and environmental stressors influence migratory movements is of critical importance because of their potential to cause a mismatch between the timing of animal movements and the emergence of high-quality forage. We measured stress hormones (fecal glucocorticoid metabolites; FGMs) to test hypotheses about the effects of high-quality forage tracking, human land-use and use of stopover sites on the physiological state of individuals along a migratory route. We collected and analysed FGM concentrations from 399 mule deer (Odocoileus hemionus) samples obtained along a 241-km migratory route in western Wyoming, USA, during spring 2015 and 2016. In support of a fitness benefit hypothesis, individuals occupying areas closer to peak forage quality had decreased FGM levels. Specifically, for every 10-day interval closer to peak forage quality, we observed a 7% decrease in FGMs. Additionally, we observed support for both an additive anthropogenic stress hypothesis and a hypothesis that stopovers act as physiological refugia, wherein individuals sampled far from stopover sites exhibited 341% higher FGM levels if in areas of low landscape integrity compared to areas of high landscape integrity. Overall, our findings indicate that the physiological state of mule deer during migration is influenced by both anthropogenic disturbances and their ability to track high-quality forage. The availability of stopovers, however, modulates physiological responses to those stressors. Thus, our results support a recent call for the prioritization of stopover locations and connectivity between those locations in conservation planning for migratory large herbivores.

20.
Ecol Evol ; 3(7): 2233-40, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23919165

RESUMO

Resource selection functions (RSFs) are typically estimated by comparing covariates at a discrete set of "used" locations to those from an "available" set of locations. This RSF approach treats the response as binary and does not account for intensity of use among habitat units where locations were recorded. Advances in global positioning system (GPS) technology allow animal location data to be collected at fine spatiotemporal scales and have increased the size and correlation of data used in RSF analyses. We suggest that a more contemporary approach to analyzing such data is to model intensity of use, which can be estimated for one or more animals by relating the relative frequency of locations in a set of sampling units to the habitat characteristics of those units with count-based regression and, in particular, negative binomial (NB) regression. We demonstrate this NB RSF approach with location data collected from 10 GPS-collared Rocky Mountain elk (Cervus elaphus) in the Starkey Experimental Forest and Range enclosure. We discuss modeling assumptions and show how RSF estimation with NB regression can easily accommodate contemporary research needs, including: analysis of large GPS data sets, computational ease, accounting for among-animal variation, and interpretation of model covariates. We recommend the NB approach because of its conceptual and computational simplicity, and the fact that estimates of intensity of use are unbiased in the face of temporally correlated animal location data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA