Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 287(12): 8803-15, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22270370

RESUMO

DNA damage triggers a complex signaling cascade involving a multitude of phosphorylation events. We found that the threonine 7 (Thr-7) residue of heat shock protein 90α (Hsp90α) was phosphorylated immediately after DNA damage. The phosphorylated Hsp90α then accumulated at sites of DNA double strand breaks and formed repair foci with slow kinetics, matching the repair kinetics of complex DNA damage. The phosphorylation of Hsp90α was dependent on phosphatidylinositol 3-kinase-like kinases, including the DNA-dependent protein kinase (DNA-PK) in particular. DNA-PK plays an essential role in the repair of DNA double strand breaks by nonhomologous end-joining and in the signaling of DNA damage. It is also present in the cytoplasm of the cell and has been suggested to play a role in cytoplasmic signaling pathways. Using stabilized double-stranded DNA molecules to activate DNA-PK, we showed that an active DNA-PK complex could be assembled in the cytoplasm, resulting in phosphorylation of the cytoplasmic pool of Hsp90α. In vivo, reverse phase protein array data for tumors revealed that basal levels of Thr-7-phosphorylated Hsp90α were correlated with phosphorylated histone H2AX levels. The Thr-7 phosphorylation of the ubiquitously produced and secreted Hsp90α may therefore serve as a surrogate biomarker of DNA damage. These findings shed light on the interplay between central DNA repair enzymes and an essential molecular chaperone.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas de Choque Térmico HSP90/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular Tumoral , Feminino , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Humanos , Camundongos , Camundongos Nus , Fosforilação , Ratos
2.
Neoplasia ; 16(10): 835-44, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25379020

RESUMO

Melanomas are highly radioresistant tumors, mainly due to efficient DNA double-strand break (DSB) repair. Dbait (which stands for DNA strand break bait) molecules mimic DSBs and trap DNA repair proteins, thereby inhibiting repair of DNA damage induced by radiation therapy (RT). First, the cytotoxic efficacy of Dbait in combination with RT was evaluated in vitro in SK28 and 501mel human melanoma cell lines. Though the extent of RT-induced damage was not increased by Dbait, it persisted for longer revealing a repair defect. Dbait enhanced RT efficacy independently of RT doses. We further assayed the capacity of DT01 (clinical form of Dbait) to enhance efficacy of "palliative" RT (10 × 3 Gy) or "radical" RT (20 × 3 Gy), in an SK28 xenografted model. Inhibition of repair of RT-induced DSB by DT01 was revealed by the significant increase of micronuclei in tumors treated with combined treatment. Mice treated with DT01 and RT combination had significantly better tumor growth control and longer survival compared to RT alone with the "palliative" protocol [tumor growth delay (TGD) by 5.7-fold; median survival: 119 vs 67 days] or the "radical" protocol (TGD by 3.2-fold; median survival: 221 vs 109 days). Only animals that received the combined treatment showed complete responses. No additional toxicity was observed in any DT01-treated groups. This preclinical study provides encouraging results for a combination of a new DNA repair inhibitor, DT01, with RT, in the absence of toxicity. A first-in-human phase I study is currently under way in the palliative management of melanoma in-transit metastases (DRIIM trial).


Assuntos
Reparo do DNA/efeitos dos fármacos , Desoxirribonucleotídeos/farmacologia , Melanoma/tratamento farmacológico , Melanoma/radioterapia , Radiossensibilizantes/farmacologia , Animais , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Relação Dose-Resposta à Radiação , Feminino , Humanos , Melanoma/mortalidade , Camundongos Nus , Terapia de Alvo Molecular , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Sci Transl Med ; 6(245): 245ra93, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25031268

RESUMO

In vitro studies suggested that sub-millisecond pulses of radiation elicit less genomic instability than continuous, protracted irradiation at the same total dose. To determine the potential of ultrahigh dose-rate irradiation in radiotherapy, we investigated lung fibrogenesis in C57BL/6J mice exposed either to short pulses (≤ 500 ms) of radiation delivered at ultrahigh dose rate (≥ 40 Gy/s, FLASH) or to conventional dose-rate irradiation (≤ 0.03 Gy/s, CONV) in single doses. The growth of human HBCx-12A and HEp-2 tumor xenografts in nude mice and syngeneic TC-1 Luc(+) orthotopic lung tumors in C57BL/6J mice was monitored under similar radiation conditions. CONV (15 Gy) triggered lung fibrosis associated with activation of the TGF-ß (transforming growth factor-ß) cascade, whereas no complications developed after doses of FLASH below 20 Gy for more than 36 weeks after irradiation. FLASH irradiation also spared normal smooth muscle and epithelial cells from acute radiation-induced apoptosis, which could be reinduced by administration of systemic TNF-α (tumor necrosis factor-α) before irradiation. In contrast, FLASH was as efficient as CONV in the repression of tumor growth. Together, these results suggest that FLASH radiotherapy might allow complete eradication of lung tumors and reduce the occurrence and severity of early and late complications affecting normal tissue.


Assuntos
Raios gama , Neoplasias/patologia , Animais , Apoptose/efeitos da radiação , Vasos Sanguíneos/efeitos da radiação , Brônquios/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino , Humanos , Pulmão/irrigação sanguínea , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA