Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(42): e2210857119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215494

RESUMO

The adsorption of ions to water-hydrophobe interfaces influences a wide range of phenomena, including chemical reaction rates, ion transport across biological membranes, and electrochemical and many catalytic processes; hence, developing a detailed understanding of the behavior of ions at water-hydrophobe interfaces is of central interest. Here, we characterize the adsorption of the chaotropic thiocyanate anion (SCN-) to two prototypical liquid hydrophobic surfaces, water-toluene and water-decane, by surface-sensitive nonlinear spectroscopy and compare the results against our previous studies of SCN- adsorption to the air-water interface. For these systems, we observe no spectral shift in the charge transfer to solvent spectrum of SCN-, and the Gibb's free energies of adsorption for these three different interfaces all agree within error. We employed molecular dynamics simulations to develop a molecular-level understanding of the adsorption mechanism and found that the adsorption for SCN- to both water-toluene and water-decane interfaces is driven by an increase in entropy, with very little enthalpic contribution. This is a qualitatively different mechanism than reported for SCN- adsorption to the air-water and graphene-water interfaces, wherein a favorable enthalpy change was the main driving force, against an unfavorable entropy change.


Assuntos
Grafite , Água , Adsorção , Alcanos , Ânions , Íons/química , Solventes , Tiocianatos/química , Tolueno , Água/química
2.
Faraday Discuss ; 249(0): 9-37, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-37795954

RESUMO

In this article we discuss current issues in the context of the four chosen subtopics for the meeting: dynamics and nano-rheology of interfacial water, electrified/charged aqueous interfaces, ice interfaces, and soft matter/water interfaces. We emphasize current advances in both theory and experiment, as well as important practical manifestations and areas of unresolved controversy.

3.
J Am Chem Soc ; 145(41): 22384-22393, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37774115

RESUMO

In the course of our investigations of the adsorption of ions to the air-water interface, we previously reported the surprising result that doubly charged carbonate anions exhibit a stronger surface affinity than singly charged bicarbonate anions. In contrast to monovalent, weakly hydrated anions, which generally show enhanced concentrations in the interfacial region, multivalent (and strongly hydrated) anions are expected to show a much weaker surface propensity. In the present work, we use resonantly enhanced deep-UV second-harmonic generation spectroscopy to measure the Gibbs free energy of adsorption of both carbonate (CO32-) and bicarbonate (HCO3-) anions to the air-water interface. Contrasting the predictions of classical electrostatic theory and in support of our previous findings from X-ray photoelectron spectroscopy, we find that carbonate anions do indeed exhibit much stronger surface affinity than do the bicarbonate anions. Extensive computer simulations reveal that strong ion pairing of CO32- with the Na+ countercation in the interfacial region results in the formation of near-neutral agglomerate clusters, consistent with a theory of interfacial ion adsorption based on hydration free energy and capillary waves. Simulated X-ray photoelectron spectra predict a 1 eV shift in the carbonate spectra compared to that of bicarbonate, further confirming our experiments. These findings not only advance our fundamental understanding of ion adsorption chemistry but also impact important practical processes such as ocean acidification, sea-spray aerosol chemistry, and mammalian respiration physiology.

4.
Phys Rev Lett ; 127(9): 096801, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34506179

RESUMO

Charge transport processes at interfaces play a crucial role in many processes. Here, the first soft x-ray second harmonic generation (SXR SHG) interfacial spectrum of a buried interface (boron-Parylene N) is reported. SXR SHG shows distinct spectral features that are not observed in x-ray absorption spectra, demonstrating its extraordinary interfacial sensitivity. Comparison to electronic structure calculations indicates a boron-organic separation distance of 1.9 Å, with changes of less than 1 Å resulting in easily detectable SXR SHG spectral shifts (ca. hundreds of milli-electron volts).

5.
J Phys Chem A ; 125(20): 4267-4275, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33792328

RESUMO

Current theory and measurements establish the age of the universe as ca. 13.8 billion years. For the first several hundred million years of its existence, it was a dark, opaque void. After that, the hydrogen atoms comprising most of the "ordinary" matter began to condense and ionize, eventually forming the first stars that would illuminate the sky. Details of how these "primordial" stars formed have been widely debated, but remain elusive. A central issue in this process is the mechanism by which the primordial gas (mainly hydrogen and helium atoms) collected via the action of dark matter cooled and further accreted to fusion densities. Current models invoke collisional excitation of H2 molecular rotations and subsequent radiative rotational transitions allowed by the weak molecular quadrupole moment. In this work, we review the salient considerations and present some new ideas, based on recent spectroscopic observations of neutral H3 Rydberg electronic state emission in the mid-infrared region.

6.
Proc Natl Acad Sci U S A ; 114(51): 13369-13373, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-28827359

RESUMO

The adsorption of ions to aqueous interfaces is a phenomenon that profoundly influences vital processes in many areas of science, including biology, atmospheric chemistry, electrical energy storage, and water process engineering. Although classical electrostatics theory predicts that ions are repelled from water/hydrophobe (e.g., air/water) interfaces, both computer simulations and experiments have shown that chaotropic ions actually exhibit enhanced concentrations at the air/water interface. Although mechanistic pictures have been developed to explain this counterintuitive observation, their general applicability, particularly in the presence of material substrates, remains unclear. Here we investigate ion adsorption to the model interface formed by water and graphene. Deep UV second harmonic generation measurements of the SCN- ion, a prototypical chaotrope, determined a free energy of adsorption within error of that for air/water. Unlike for the air/water interface, wherein repartitioning of the solvent energy drives ion adsorption, our computer simulations reveal that direct ion/graphene interactions dominate the favorable enthalpy change. Moreover, the graphene sheets dampen capillary waves such that rotational anisotropy of the solute, if present, is the dominant entropy contribution, in contrast to the air/water interface.

8.
Chem Rev ; 117(23): 13909-13934, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29125751

RESUMO

X-ray absorption spectroscopy (XAS) is an electronic absorption technique for which the initial state is a deeply buried core level. The photon energies corresponding to such transitions are governed primarily by the binding energies of the initial state. Because the binding energies of core electrons vary significantly among atomic species, this makes XAS an element-selective spectroscopy. Proper interpretation of XA spectra can provide detailed information on the local chemical and geometric environment of the target atom. The introduction of liquid microjet and flow cell technologies into XAS experiments has enabled the general study of liquid samples. Liquids studied to date include water, alcohols, and solutions with relevance to biology and energy technology. This Review summarizes the experimental techniques employed in XAS studies of liquid samples and computational methods used for interpretation of the resulting spectra and summarizes salient experiments and results obtained in the XAS investigations of liquids.

9.
J Phys Chem A ; 122(37): 7421-7426, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30148958

RESUMO

We report the assignment and analysis of 176 transitions belonging to a librational band of the (H2O)6 cage isomer near 525 cm-1(15 THz). From a fit of the transitions to an asymmetric top model, we observe both dramatic changes in the rotational constants relative to the ground state, indicating significant nonrigidity, and striking enhancement in the tunneling motions that break and reform the hydrogen bonds in the cluster. This is the fifth water cluster system to display such an enhancement in the 15 THz librational region, the details of which may help to elucidate the hydrogen bond dynamics occurring in bulk liquid water.

10.
J Chem Phys ; 147(6): 064301, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28810778

RESUMO

Theoretical studies of hydrogen bond network rearrangement (HBNR) dynamics in liquid water have indicated that librational motions initiate the hydrogen bond breaking/formation processes. We present the results of using a simple time evolution method to extract and compare the tunneling lifetimes for motions that break and reform the hydrogen bond for the water dimer, trimer, and pentamer from the experimentally measured tunneling splittings in the ground and excited intermolecular vibrational states. We find that the specific nature of the intermolecular vibrational excitation does not significantly influence the tunneling lifetime of the dimer, but that only excitations to a librational vibration affect the water trimer and pentamer lifetimes. The specific enhancement of bifurcation tunneling in larger clusters relative to the dimer also indicates that hydrogen bond cooperativity is a vital element of these dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA