Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 23(37): 8857-8870, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28272755

RESUMO

The TNU-9 zeolite (TUN framework) is one of the most complex zeolites known. It represents a highly promising matrix for both acid and redox catalytic reactions. We present here a newly developed approach involving the use of 29 Si and 27 Al (3Q) MAS NMR spectroscopy, CoII as probes monitored by UV/Vis and FTIR spectroscopy, and extensive periodic DFT calculations, including molecular dynamics, to investigating the aluminum distribution in the TUN framework and the location of aluminum pairs and divalent cations in extra-framework cationic positions. Our study reveals that 40 and 60 % of aluminum atoms in the TNU-9 zeolite are isolated single aluminum atoms and aluminum pairs, respectively. The aluminum pairs are present in two types of six-membered rings forming the corresponding α and ß (15 and 85 %, respectively, of aluminum pairs) sites of bare divalent cations. The α site is located on the TUN straight channel wall and it connects two channel intersections. The suggested near-planar ß site is present at the channel intersection.

2.
Angew Chem Int Ed Engl ; 54(2): 541-5, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25393612

RESUMO

Zeolites are highly important heterogeneous catalysts. Besides Brønsted SiOHAl acid sites, also framework AlFR Lewis acid sites are often found in their H-forms. The formation of AlFR Lewis sites in zeolites is a key issue regarding their selectivity in acid-catalyzed reactions. The local structures of AlFR Lewis sites in dehydrated zeolites and their precursors--"perturbed" AlFR atoms in hydrated zeolites--were studied by high-resolution MAS NMR and FTIR spectroscopy and DFT/MM calculations. Perturbed framework Al atoms correspond to (SiO)3AlOH groups and are characterized by a broad (27)Al NMR resonance (δi = 59-62 ppm, CQ = 5 MHz, and η = 0.3-0.4) with a shoulder at 40 ppm in the (27)Al MAS NMR spectrum. Dehydroxylation of (SiO)3AlOH occurs at mild temperatures and leads to the formation of AlFR Lewis sites tricoordinated to the zeolite framework. Al atoms of these (SiO)3Al Lewis sites exhibit an extremely broad (27)Al NMR resonance (δi ≈ 67 ppm, CQ ≈ 20 MHz, and η ≈ 0.1).

3.
Chemphyschem ; 14(3): 520-31, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23319377

RESUMO

The role of framework oxygen atoms in N(2)O decomposition [N(2)O(g)→N(2)(g) and 1/2O(2)(g)] over Fe-ferrierite is investigated employing a combined experimental (N(2)(18)O decomposition in batch experiments followed by mass spectroscopy measurements) and theoretical (density functional theory calculations) approach. The occurrence of the isotope exchange indicates that framework oxygen atoms are involved in the N(2)O decomposition catalyzed by Fe-ferrierite. Our study, using an Fe-ferrierite sample with iron exclusively present as Fe(II) cations accommodated in the cationic sites, shows that the mobility of framework oxygen atoms in the temperature range: 553 to 593 K is limited to the four framework oxygen atoms of the two AlO(4)(-) tetrahedra forming cationic sites that accomodate Fe(II). They exchange with the Fe extra-framework (18)O atom originating from the decomposed N(2)(18)O. We found, using DFT calculations, that O(2) molecules facilitate the oxygen exchange. However, the corresponding calculated energy barrier of 87 kcal mol(-1) is still very high and it is higher than the assumed experimental value based on the occurrence of the sluggish oxygen exchange at 553 K.

4.
ACS Catal ; 13(20): 13484-13505, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37881789

RESUMO

In this work, we investigated cyclohexane oxidative dehydrogenation (ODH) catalyzed by cobalt ferrite nanoparticles supported on reduced graphene oxide (RGO). We aim to identify the active sites that are specifically responsible for full and partial dehydrogenation using advanced spectroscopic techniques such as X-ray photoelectron emission microscopy (XPEEM) and X-ray photoelectron spectroscopy (XPS) along with kinetic analysis. Spectroscopically, we propose that Fe3+/Td sites could exclusively produce benzene through full cyclohexane dehydrogenation, while kinetic analysis shows that oxygen-derived species (O*) are responsible for partial dehydrogenation to form cyclohexene in a single catalytic sojourn. We unravel the dynamic cooperativity between octahedral and tetrahedral sites and the unique role of the support in masking undesired active (Fe3+/Td) sites. This phenomenon was strategically used to control the abundance of these species on the catalyst surface by varying the particle size and the wt % content of the nanoparticles on the RGO support in order to control the reaction selectivity without compromising reaction rates which are otherwise extremely challenging due to the much favorable thermodynamics for complete dehydrogenation and complete combustion under oxidative conditions.

5.
J Phys Chem A ; 112(31): 7162-9, 2008 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-18636696

RESUMO

Large-scale plasma was created in gas mixtures containing carbon monoxide by high-power laser-induced dielectric breakdown (LIDB). The composition of the mixtures used corresponded to a cometary and/or meteoritic impact into the Earth's early atmosphere. A multiple-centimeter-sized fireball was created by focusing a single 85 J, 450 ps near-infrared laser pulse into the center of a 15 L gas cell. The excited reaction intermediates that formed in various stages of the LIDB plasma chemical evolution were investigated by optical emission spectroscopy (OES) with temporal resolution. Special attention was paid to any OES signs of molecular ions. However, carbon monoxide cations were registered only if their production was enhanced by Penning ionization, i.e., excess He was added to the CO. The chemical consequences of laser-produced plasma generation in a CO-N 2-H 2O mixture were investigated using high resolution Fourier-transform infrared absorption spectroscopy (FTIR) and gas chromatography (GC). Several simple inorganic and organic compounds were identified in the reaction mixture exposed to ten laser sparks. H 2 (18)O was used to avoid possible contamination. The large laser spark triggered more complex reactivity originating in carbon monoxide than expected, when taking into account the strong triple bond of carbon monoxide causing typically inefficient dissociation of this molecule in electrical discharges.

7.
Chem Commun (Camb) ; (38): 4810-1, 2005 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-16193122

RESUMO

It is shown that hydrogen peroxide enhances substantially selective reduction of NOx to nitrogen with hydrocarbons over Ag/alumina catalysts.


Assuntos
Óxido de Alumínio/química , Hidrocarbonetos/química , Peróxido de Hidrogênio/química , Óxidos de Nitrogênio/química , Prata/química , Catálise , Nitrogênio/química , Oxirredução , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA