Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Phys Chem A ; 120(9): 1588-600, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26905260

RESUMO

Ion pairs between porphyrin-type compounds have been successfully employed for spectral sensitization of semiconductor surfaces and for the preparation of collective binary ionic materials for photonic and (photo)catalytic applications. The understanding of the photophysical processes occurring within ion-paired porphyrin dimers is thus of remarkable importance for the optimization and improvement of such systems. Herein the ion-pair species formed between ZnTMePyP(4+) (Zn1) or H2TMePyP(4+) (H21) and ZnTPPS(4-) (Zn2) or H2TPPS(4-) (H22) in a variety of solvent mixtures are characterized and their photophysics thoroughly investigated by time-resolved techniques. In all the systems studied, very fast and efficient photoinduced charge separation is observed, with the cationic porphyrin being reduced and the anionic one oxidized. Interestingly, despite the very short charge separation distance, the lifetime for charge recombination, depending on the energy gap, can extend into the nanosecond time domain, showing great potential for the utilization of this molecular design within energy conversion schemes.

2.
Chem Soc Rev ; 43(12): 4005-18, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24604096

RESUMO

Photoinduced electron transfer plays key roles in many areas of chemistry. Superexchange is an effective model to rationalize photoinduced electron transfer, particularly when molecular bridges between donor and acceptor subunits are present. In this tutorial review we discuss, within a superexchange framework, the complex role played by the bridge, with an emphasis on differences between thermal and photoinduced electron transfer, oxidative and reductive photoinduced processes, charge separation and charge recombination. Modular bridges are also considered, with specific attention to the distance dependence of donor-acceptor electronic coupling and electron transfer rate constants. The possibility of transition, depending on the bridge energetics, from coherent donor-acceptor electron transfer to incoherent charge injection and hopping through the bridge is also discussed. Finally, conceptual analogies between bridge effects in photoinduced electron transfer and optical intervalence transfer are outlined. Selected experimental examples, instrumental to illustration of the principles, are discussed.


Assuntos
Luz , Modelos Moleculares , Transporte de Elétrons/efeitos da radiação , Elétrons , Substâncias Macromoleculares/química , Teoria Quântica
3.
J Am Chem Soc ; 136(23): 8189-92, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24878238

RESUMO

The first water oxidation catalyst containing only vanadium atoms as metal centers is reported. The compound is the mixed-valence [(V(IV)5V(V)1)O7(OCH3)12](-) species, 1. Photoinduced water oxidation catalyzed by 1, in the presence of Ru(bpy)3(2+) (bpy = 2,2'-bipyridine) and Na2S2O8, in acetonitrile/aqueous phosphate buffer takes place with a quantum yield of 0.20. A hole scavenging reaction between the photochemically generated Ru(bpy)3(3+) and 1 occurs with a bimolecular rate constant of 2.5 × 10(8) M(-1) s(-1). The time-resolved formation of the oxidized molecular catalyst 1(+) in bimolecular reactions is also evidenced for the first time by transient absorption spectroscopy. This result opens the way to the use of less expensive vanadium clusters as water oxidation catalysts in artificial photosynthesis schemes.


Assuntos
Luz , Compostos Organometálicos/química , Vanádio/química , Água/química , 2,2'-Dipiridil/química , Catálise , Modelos Moleculares , Oxirredução , Processos Fotoquímicos
4.
Phys Chem Chem Phys ; 16(24): 12000-7, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24664104

RESUMO

Artificial photosynthesis aims at efficient water splitting into hydrogen and oxygen, by exploiting solar light. As a priority requirement, this process entails the integration of suitable multi-electron catalysts with light absorbing units, where charge separation is generated in order to drive the catalytic routines. The final goal could be the transposition of such an asset into a photoelectrocatalytic cell, where the two half-reactions, proton reduction to hydrogen and water oxidation to oxygen, take place at two appropriately engineered photoelectrodes. We herein report a covalent approach to anchor a Co(II) water oxidation catalyst to a Ru(II) polypyridine photosensitizer unit; photophysical characterisation and the catalytic activity of such a dyad in a light activated cycle are reported, and implications for the development of regenerative systems are discussed.


Assuntos
Cobalto/química , Luz , Rutênio/química , Água/química , Catálise , Eletroquímica , Oxirredução , Fármacos Fotossensibilizantes/química
5.
Phys Chem Chem Phys ; 16(3): 818-26, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24287945

RESUMO

Photoinduced electron transfer is a topical issue in chemistry. In multicomponent donor-bridge-acceptor systems, electron transfer is usually discussed within the frame of superexchange theory, which takes into account electronic coupling mediated by virtual states involving bridge orbitals. However, the schematization used for superexchange in thermal electron transfer processes is not suitable to immediately understand some intriguing aspects of photoinduced charge separation and recombination processes, which are only uncovered by analyzing the virtual states involved in forward and backward excited-state electron transfer. In particular, for oxidative photoinduced electron transfer, a low-energy virtual state which cannot mediate the forward charge separation can efficiently mediate charge recombination via the hole-transfer superexchange route, whereas for reductive photoinduced electron transfer, a low-energy virtual state which cannot mediate the forward process can efficiently mediate charge recombination via electron-transfer superexchange. As a consequence, to obtain long-lived charge-separated states upon oxidative photoinduced electron transfer in donor-bridge-acceptor systems it is preferable to avoid easy-to-oxidize bridges, whereas easy-to-reduce bridges should better be avoided in reductive photoinduced charge separation. These considerations, exemplified by the analysis of some literature cases, can be useful hints for the design of long-lived charge-separated states.

6.
Chem Soc Rev ; 42(6): 2262-80, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23011384

RESUMO

Among molecular water oxidation catalysts (WOCs), those featuring a reactive set of four multi-redox transition metals can leverage an extraordinary interplay of electronic and structural properties. These are of particular interest, owing to their close structural, and possibly functional, relationship to the oxygen evolving complex of natural photosynthesis. In this review, special attention is given to two classes of tetrametallic molecular WOCs: (i) M(4)O(4) cubane-type structures stabilized by simple organic ligands, and (ii) systems in which a tetranuclear metal core is stabilized by coordination of two polyoxometalate (POM) ligands. Recent work in this rapidly evolving field is reviewed, with particular emphasis on photocatalytic aspects. Special attention is given to studies addressing the mechanistic complexity of these systems, sometimes overlooked in the rush for oxygen evolving performance. The complementary role of molecular WOCs and their relationship with bulk oxides and heterogeneous catalysis are discussed.

7.
Angew Chem Int Ed Engl ; 53(42): 11182-5, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25066304

RESUMO

The functional core of oxygenic photosynthesis is in charge of catalytic water oxidation by a multi-redox Mn(III)/Mn(IV) manifold that evolves through five electronic states (S(i), where i=0-4). The synthetic model system of this catalytic cycle and of its S0→S4 intermediates is the expected turning point for artificial photosynthesis. The tetramanganese-substituted tungstosilicate [Mn(III)3Mn(IV)O3(CH3COO)3(A-α-SiW9O34)](6-)(Mn4POM) offers an unprecedented mimicry of the natural system in its reduced S0 state; it features a hybrid organic-inorganic coordination sphere and is anchored on a polyoxotungstate. Evidence for its photosynthetic properties when combined with [Ru(bpy)3](2+) and S2O8(2-) is obtained by nanosecond laser flash photolysis; its S0→S1 transition within milliseconds and multiple-hole-accumulating properties were studied. Photocatalytic oxygen evolution is achieved in a buffered medium (pH 5) with a quantum efficiency of 1.7%.


Assuntos
Compostos de Manganês/química , Manganês/química , Oxigênio/química , Compostos de Tungstênio/química , Água/química , Catálise , Modelos Moleculares , Oxirredução , Óxidos/química , Fotólise , Fotossíntese , Complexo de Proteína do Fotossistema II/química
8.
Chemistry ; 19(28): 9261-71, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23733746

RESUMO

A noble-metal-free system for photochemical hydrogen production is described, based on ascorbic acid as sacrificial donor, aluminium pyridyl porphyrin as photosensitizer, and cobaloxime as catalyst. Although the aluminium porphyrin platform has docking sites for both the sacrificial donor and the catalyst, the resulting associated species are essentially inactive because of fast unimolecular reversible electron-transfer quenching. Rather, the photochemically active species is the fraction of sensitizer present, in the aqueous/organic solvent used for hydrogen evolution, as free species. As shown by nanosecond laser flash photolysis experiments, its long-lived triplet state reacts bimolecularly with the ascorbate donor, and the reduced sensitizer thus formed, subsequently reacts with the cobaloxime catalyst, thereby triggering the hydrogen evolution process. The performance is good, particularly in terms of turnover frequencies (TOF=10.8 or 3.6 min(-1), relative to the sensitizer or the catalyst, respectively) and the quantum yield (Φ=4.6%, that is, 9.2% of maximum possible value). At high sacrificial donor concentration, the maximum turnover number (TON=352 or 117, relative to the sensitizer or the catalyst, respectively) is eventually limited by hydrogenation of both sensitizer (chlorin formation) and catalyst.

9.
Photochem Photobiol Sci ; 12(10): 1749-53, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23900713

RESUMO

Three porphyrin-cobaloxime dyads, suitable for application in photoinduced hydrogen generation with sacrificial donors, are characterized by ultrafast spectroscopy in order to clarify the primary photochemical events.


Assuntos
Hidrogênio/química , Compostos Organometálicos/química , Processos Fotoquímicos , Porfirinas/química , Complexos de Coordenação/química , Cristalografia por Raios X , Conformação Molecular , Espectrometria de Fluorescência
10.
J Am Chem Soc ; 134(27): 11104-7, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22716164

RESUMO

Isostructural cubane-shaped catalysts [Co(III)(4)(µ-O)(4)(µ-CH(3)COO)(4)(p-NC(5)H(4)X)(4)], 1-X (X = H, Me, t-Bu, OMe, Br, COOMe, CN), enable water oxidation under dark and illuminated conditions, where the primary step of photoinduced electron transfer obeys to Hammett linear free energy relationship behavior. Ligand design and catalyst optimization are instrumental for sustained O(2) productivity with quantum efficiency up to 80% at λ > 400 nm, thus opening a new perspective for in vitro molecular photosynthesis.

11.
Chemistry ; 18(43): 13651-64, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-22969018

RESUMO

A novel, highly stable photochromic dyad 3 based on a perylene bisimide (PBI) fluorophore and a diarylethene (DAE) photochrome was synthesized and the optical and photophysical properties of this dyad were studied in detail by steady-state and time-resolved ultrafast spectroscopy. This photochromic dyad can be switched reversibly by UV-light irradiation of its ring-open form 3 o leading to the ring-closed form 3 c, and back reaction of 3 c to 3 o by irradiation with visible light. Solvent-dependent fluorescence studies revealed that the emission of ring-closed form 3 c is drastically quenched in solvents of medium (e.g., chloroform) to high (e.g., acetone) polarities, while the emission of the ring-open form 3 o is appreciably quenched only in highly polar solvents like DMF. The strong fluorescence quenching of 3 c is attributed to a photoinduced electron-transfer (PET) process from the excited PBI unit to ring-closed DAE moiety, as this process is thermodynamically highly favorable with a Gibbs free energy value of -0.34 eV in dichloromethane. The electron-transfer mechanism for the fluorescence quenching of ring-closed 3 c is substantiated by ultrafast transient measurements in dichloromethane and acetone, revealing stabilization of charge-separated states of 3 c in these solvents. Our results reported here show that the new photochromic dyad 3 has potential for nondestructive read-out in write/read/erase fluorescent memory systems.

12.
Inorg Chem ; 51(13): 7324-31, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22686248

RESUMO

The tetraruthenium polyoxometalate [Ru(4)(µ-O)(4)(µ-OH)(2)(H(2)O)(4)(γ-SiW(10)O(36))(2)](10-) (1) behaves as a very efficient water oxidation catalyst in photocatalytic cycles using Ru(bpy)(3)(2+) as sensitizer and persulfate as sacrificial oxidant. Two interrelated issues relevant to this behavior have been examined in detail: (i) the effects of ion pairing between the polyanionic catalyst and the cationic Ru(bpy)(3)(2+) sensitizer, and (ii) the kinetics of hole transfer from the oxidized sensitizer to the catalyst. Complementary charge interactions in aqueous solution leads to an efficient static quenching of the Ru(bpy)(3)(2+) excited state. The quenching takes place in ion-paired species with an average 1:Ru(bpy)(3)(2+) stoichiometry of 1:4. It occurs by very fast (ca. 2 ps) electron transfer from the excited photosensitizer to the catalyst followed by fast (15-150 ps) charge recombination (reversible oxidative quenching mechanism). This process competes appreciably with the primary photoreaction of the excited sensitizer with the sacrificial oxidant, even in high ionic strength media. The Ru(bpy)(3)(3+) generated by photoreaction of the excited sensitizer with the sacrificial oxidant undergoes primary bimolecular hole scavenging by 1 at a remarkably high rate (3.6 ± 0.1 × 10(9) M(-1) s(-1)), emphasizing the kinetic advantages of this molecular species over, e.g., colloidal oxide particles as water oxidation catalysts. The kinetics of the subsequent steps and final oxygen evolution process involved in the full photocatalytic cycle are not known in detail. An indirect indication that all these processes are relatively fast, however, is provided by the flash photolysis experiments, where a single molecule of 1 is shown to undergo, in 40 ms, ca. 45 turnovers in Ru(bpy)(3)(3+) reduction. With the assumption that one molecule of oxygen released after four hole-scavenging events, this translates into a very high average turnover frequency (280 s(-1)) for oxygen production.


Assuntos
Compostos Organometálicos/química , Fármacos Fotossensibilizantes/química , Rutênio/química , Compostos de Tungstênio/química , Água/química , Catálise , Íons/química , Compostos Organometálicos/síntese química , Oxirredução , Processos Fotoquímicos
13.
J Phys Chem A ; 116(1): 119-31, 2012 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-22103466

RESUMO

A series of dyads of general formula Ru(bpy)(2)(bpy-ph(n)-DQ)(4+) (n = 1-5), based on a Ru(II) polypyridine unit as photoexcitable donor, a set of oligo-p-phenylene bridges with 1-5 modular units, and a cyclo-diquaternarized 2,2'-bipyridine (DQ(2+)) as electron acceptor unit, have been synthesized. Their spectroscopic and photophysical properties have been investigated in CH(3)CN and CH(2)Cl(2) by time-resolved emission and absorption spectroscopy in the nanosecond and picosecond time scale. The experimental study has also been complemented with a computational investigation carried out on the whole series of dyads. The absorption spectra of the dyads show new spectroscopic transitions, in addition to those characteristic of the donor, bridge, and acceptor fragments. DFT calculations suggest the assignment of such bands as bridge-to-acceptor (π ph(n)) → (π* DQ) charge-transfer transitions. This assignment is consistent with the solvatochromic and spectroelectrochemical behavior of the new bands. For all the dyads at room temperature in fluid solution, the typical (3)MLCT luminescence of the Ru(II) polypyridine unit is strongly (>90%) quenched, supporting the occurrence of an efficient intramolecular photoinduced electron transfer. The study has revealed, however, that the photophysical mechanism is actually more complex than presumed on the basis of a simple photoinduced electron-transfer scheme. For n = 1, very fast (few picoseconds) photoinduced electron transfer from the MLCT state localized on the substituted bpy ligand to the DQ unit has been observed, followed by slower interligand hopping and charge recombination. For n = 2-5, MLCT excited-state quenching takes place without transient detection of charge-separated product, indicating that charge recombination is faster than charge separation. This behavior can be rationalized in terms of the superexchange couplings expected through this type of bridges for the two processes. The kinetics of MLCT quenching in the dyads with n = 1-5 does not follow the usual exponential falloff with bridge length: after a regular decrease for n = 1-3, the rate constants become almost insensitive to bridge length for n = 3-5. The rationale of this uncommon behavior, as suggested by DFT calculations, lies in a switch in the MLCT quenching mechanism with increasing bridge length, from oxidative quenching by the DQ acceptor to reductive quenching by the bridge.

14.
Top Curr Chem ; 303: 121-50, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21547686

RESUMO

Innovative oxygen evolving catalysts, taken from the pool of nanosized, water soluble, molecular metal oxides, the so-called polyoxometalates (POMs), represent an extraordinary opportunity in the field of artificial photosynthesis. These catalysts possess a highly robust, totally inorganic structure, and can provide a unique mimicry of the oxygen evolving center in photosynthetic II enzymes. As a result POMs can effect H2O oxidation to O2 with unprecedented efficiency. In particular, the tetra-ruthenium based POM [Ru(IV) 4(µ-OH)2(µ-O)4(H2O)4(γ-SiW(10)O(36))2](10-), Ru4(POM), displays fast kinetics, electrocatalytic activity powered by carbon nanotubes and exceptionally light-driven performance. A broad perspective is presented herein by addressing the recent progress in the field of metal-oxide nano-clusters as water oxidation catalysts, including colloidal species. Moreover, the shaping of the catalyst environment plays a fundamental role by alleviating the catalyst fatigue and stabilizing competent intermediates, thus responding to what are the formidable thermodynamic and kinetic challenges of water splitting. The design of nano-interfaces with specifically tailored carbon nanostructures and/or polymeric scaffolds opens a vast scenario for tuning electron/proton transfer mechanisms. Therefore innovation is envisaged based on the molecular modification of the hybrid photocatalytic center and of its environment.


Assuntos
Nanoestruturas/química , Fotossíntese , Água/química , Nanotubos de Carbono/química , Oxirredução
15.
Chemistry ; 16(30): 9140-53, 2010 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-20593446

RESUMO

Two families of dyad and triad systems based on perylene monoimide (PMI), quaterthiophene (QT), and 9,10-bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene (extended tetrathiafulvalene, exTTF) molecular components have been designed and synthesized. The dyads (D1 and D2) are of the PMI-QT type and the triads (T1 and T2) of the PMI-QT-exTTF type. The two families differ in the saturated or unsaturated nature of the linker groups (ethynylene in D1 and T1, ethylene in D2 and T2) that bridge the molecular components. The dyads and triads have been characterized by electrochemical, photophysical, and computational methods. Both the experimental and the computational (DFT) results indicate that in the unsaturated systems strong intercomponent interactions lead to substantial perturbation of the properties of the subunits. In particular, in T1, delocalization is particularly effective between the QT and exTTF units, which would be better viewed combined as a single electronic subsystem. For the dyad systems, the photophysics observed following excitation of the PMI unit is solvent-dependent. In moderately polar solvents (dichloromethane, diethyl ether) fast charge separation is followed by recombination to the ground state. In toluene, slow conversion to the charge-separated state is followed by intersystem crossing and recombination to yield the triplet state of the PMI unit. The behavior of the triads, on the other hand, is remarkably similar to that of the corresponding dyads, which indicates that, after primary charge separation, hole shift from the oxidized QT component to exTTF is quite inefficient. This unexpected result has been rationalized on the basis of the anomalous (simultaneous two-electron oxidation) electrochemistry of exTTF and with the help of DFT calculations. In fact, although exTTF is electrochemically easier to oxidize than QT by around 0.6 V, the one-electron redox orbitals (HOMOs) of the two units in triad T2 are almost degenerate.

18.
J Am Chem Soc ; 130(23): 7286-99, 2008 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-18479107

RESUMO

A 1,2-bis(2-methylbenzothiophene-3-yl)maleimide model ( DAE) and two dyads in which this photochromic unit is coupled, via a direct nitrogen-carbon bond ( Ru-DAE) or through an intervening methylene group ( Ru-CH 2-DAE ), to a ruthenium polypyridine chromophore have been synthesized. The photochemistry and photophysics of these systems have been thoroughly characterized in acetonitrile by a combination of stationary and time-resolved (nano- and femtosecond) spectroscopic methods. The diarylethene model DAE undergoes photocyclization by excitation at 448 nm, with 35% photoconversion at stationary state. The quantum yield increases from 0.22 to 0.33 upon deaeration. Photochemical cycloreversion (quantum yield, 0.51) can be carried out to completion upon excitation at lambda > 500 nm. Photocyclization takes place both from the excited singlet state (S 1), as an ultrafast (ca. 0.5 ps) process, and from the triplet state (T 1) in the microsecond time scale. In Ru-DAE and Ru-CH 2-DAE dyads, efficient photocyclization following light absorption by the ruthenium chromophore occurs with oxygen-sensitive quantum yield (0.44 and 0.22, in deaerated and aerated solution, respectively). The photoconversion efficiency is almost unitary (90%), much higher than for the photochromic DAE alone. Efficient quenching of both Ru-based MLCT phosphorescence and DAE fluorescence is observed. A complete kinetic characterization has been obtained by ps-ns time-resolved spectroscopy. Besides prompt photocyclization (0.5 ps), fast singlet energy transfer takes place from the excited diarylethene to the Ru(II) chromophore (30 ps in Ru-DAE, 150 ps in Ru-CH 2-DAE ). In the Ru(II) chromophore, prompt intersystem crossing to the MLCT triplet state is followed by triplet energy transfer to the diarylethene (1.5 ns in Ru-DAE, 40 ns in Ru-CH 2-DAE ). The triplet state of the diarylethene moiety undergoes cyclization in a microsecond time scale. The experimental results are complemented with a combined ab initio and DFT computational study whereby the potential energy surfaces (PES) for ground state (S 0) and lowest triplet state (T 1) of the diarylethene are investigated along the reaction coordinate for photocyclization/cycloreversion. At the DFT level of theory, the transition-state structures on S 0 and T 1 are similar and lean, along the reaction coordinate, toward the closed-ring form. At the transition-state geometry, the S 0 and T 1 PES are almost degenerate. Whereas on S 0 a large barrier (ca. 45 kcal mol (-1)) separates the open- and closed-ring minima, on T 1 the barriers to isomerization are modest, cyclization barrier (ca. 8 kcal mol (-1)) being smaller than cycloreversion barrier (ca. 14 kcal mol (-1)). These features account for the efficient sensitized photocyclization and inefficient sensitized cycloreversion observed with Ru-DAE. Triplet cyclization is viewed as a nonadiabatic process originating on T 1 at open-ring geometry, proceeding via intersystem crossing at transition-state geometry, and completing on S 0 at closed-ring geometry. A computational study of the prototypical model 1,2-bis(3-thienyl)ethene is used to benchmark DFT results against ab initio CASSCF//CASPT2 results and to demonstrate the generality of the main topological features of the S 0 and T 1 PES obtained for DAE. Altogether, the results provide strong experimental evidence and theoretical rationale for the triplet pathway in the photocyclization of photochromic diarylethenes.

19.
Inorg Chem ; 47(22): 10407-18, 2008 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-18947175

RESUMO

Four porphyrin-Re(I) conjugates, in which a pyridylporphyrin chromophore is directly coordinated to the electron-acceptor fragment [ fac-Re(CO) 3(bipy)] (+), were prepared: the dimeric and pentameric compounds [ fac-Re(CO) 3(bipy)(4'MPyP)](CF 3SO 3) ( 1) (4'MPyP = 4'-monopyridylporphyrin) and [ fac-{Re(CO) 3(bipy)} 4(mu-4'TPyP)](CF 3SO 3) 4 ( 2) (4'TPyP = 4'-tetrapyridylporphyrin), and the corresponding compounds with 3' rather than 4' porphyrins, [ fac-Re(CO) 3(bipy)(3'MPyP)](CF 3SO 3) ( 3) and [ fac-{Re(CO) 3(bipy)} 4(mu-3'TPyP)](CF 3SO 3) 4 ( 4). These adducts proved to be very stable in solution and were also structurally characterized in the solid state by X-ray crystallography. A detailed photophysical study was performed on the zincated adducts of the conjugates 1- 3, labeled 5, 6, and 7, respectively. In all adducts the typical fluorescence of the zinc-porphyrin unit was reduced in intensity and lifetime by the presence of the peripheral rhenium-bipy fragment(s) (heavy-atom effect). For the dyads 5 and 7 the photoinduced charge transfer process from the zinc-porphyrin to the Re(I)-bipy unit is only slightly exoergonic. Ultrafast spectroscopy experiments showed no evidence for electron transfer quenching in the dyads as such, whereas the addition of pyridine (that binds axially to zinc and thus affects the porphyrin redox potential) led to a moderately efficient photoinduced electron transfer process. In perspective, an appropriate functionalization of the bipy ligand and/or of the porphyrin chromophore might improve the thermodynamics and, thus the efficiency, of the photoinduced electron transfer process.

20.
J Phys Chem A ; 112(15): 3376-85, 2008 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-18335911

RESUMO

The photophysics of two symmetric triads, (ZnP)2PBI and (H2P)2PBI, made of two zinc or free-base porphyrins covalently attached to a central perylene bisimide unit has been investigated in dichloromethane and in toluene. The solvent has been shown to affect not only quantitatively but also qualitatively the photophysical behavior. A variety of intercomponent processes (singlet energy transfer, triplet energy transfer, photoinduced charge separation, and recombination) have been time-resolved using a combination of emission spectroscopy and femtosecond and nanosecond time-resolved absorption techniques yielding a very detailed picture of the photophysics of these systems. The singlet excited state of the lowest energy chromophore (perylene bisimide in the case of (ZnP)2PBI, porphyrin in the case of (H2P)2PBI) is always quantitatively populated, besides by direct light absorption, by ultrafast singlet energy transfer (few picosecond time constant) from the higher energy chromophore. In dichloromethane, the lowest excited singlet state is efficiently quenched by electron transfer leading to a charge-separated state where the porphyrin is oxidized and the perylene bisimide is reduced. The systems then go back to the ground state by charge recombination. The four charge separation and recombination processes observed for (ZnP)2PBI and (H2P)2PBI in dichloromethane take place in the sub-nanosecond time scale. They obey standard free-energy correlations with charge separation lying in the normal regime and charge recombination in the Marcus inverted region. In less polar solvents, such as toluene, the energy of the charge-separated states is substantially lifted leading to sharp changes in photophysical mechanism. With (ZnP)2PBI, the electron-transfer quenching is still fast, but charge recombination takes place now in the nanosecond time scale and to triplet state products rather than to the ground state. Triplet-triplet energy transfer from the porphyrin to the perylene bisimide is also involved in the subsequent deactivation of the triplet manifold to the ground state. With (H2P)2PBI, on the other hand, the driving force for charge separation is too small for electron-transfer quenching, and the deactivation of the porphyrin excited singlet takes place via intersystem crossing to the triplet followed by triplet energy transfer to the perylene bisimide and final decay to the ground state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA