Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Osteoarthritis Cartilage ; 32(1): 41-51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37866546

RESUMO

OBJECTIVES: Fibroses are disorders linked to persistence of myofibroblasts due to biochemical (e.g., Transforming growth factor-ß) and biophysical cues (e.g., a stiff microenvironment). In the context of osteoarthritis, fibrotic changes in the joint-lining synovium have been linked with disease progression. The objective of this study was to probe synovial fibroblast mechanobiology and how essential functions (i.e., lubrication) are altered in fibrotic environments. DESIGN: Both ex vivo and in vitro synovium models were assessed for fibrotic and lubrication biomarkers to better understand the role of mechanobiology and lubrication. Additionally, in vitro, work on small molecules targeting mechanobiology was assessed. RESULTS: Our results indicated that modulating mechanobiology could rescue the fibrotic phenotype instigated by stiffening microenvironment that resulted in altered lubricant expression. A small molecule therapeutic, fasudil, blocked ROCK-mediated contractility and this inhibition of the fibrotic mechano-response of synovial fibroblasts restored proper lubrication function, providing insight into mechanisms of disease progression as well as a new avenue for therapeutic development. CONCLUSION: This study identifies synovial fibrosis as a condition that potentially has joint-wide deficits through inhibiting lubrication. Additionally, modulating mechanobiology (i.e., ROCK-mediated contractility) may pose a potential target for small molecule therapies that can be delivered to the joint space. CLASSIFICATION: Applied Biological Sciences.


Assuntos
Membrana Sinovial , Humanos , Lubrificação , Fibrose , Membrana Sinovial/metabolismo , Biofísica , Progressão da Doença
2.
Artigo em Inglês | MEDLINE | ID: mdl-38823432

RESUMO

OBJECTIVE: Synovial pathology has been linked to osteoarthritis (OA) pain in patients. Microscopic grading systems for synovial changes in human OA have been described, but a standardized approach for murine models of OA is needed. We sought to develop a reproducible approach and set of minimum recommendations for reporting of synovial histopathology in mouse models of OA. METHODS: Coronal and sagittal sections from male mouse knee joints subjected to destabilization of medial meniscus (DMM) or partial meniscectomy (PMX) were collected as part of other studies. Stains included Hematoxylin and Eosin (H&E), Toluidine Blue (T-Blue), and Safranin O/Fast Green (Saf-O). Four blinded readers graded pathological features (hyperplasia, cellularity, and fibrosis) at specific anatomic locations. Inter-reader agreement of each feature score was determined. RESULTS: There was acceptable to very good agreement when using 3-4 individual readers. After DMM and PMX, expected medial predominant changes in hyperplasia and cellularity were observed, with fibrosis noted at 12 weeks post-PMX. Synovial changes were consistent from section to section in the mid-joint area. When comparing stains, H&E and T-blue resulted in better agreement compared to Saf-O stain. CONCLUSIONS: To account for the pathologic and anatomic variability in synovial pathology and allow for a more standardized evaluation that can be compared across studies, we recommend evaluating a minimum set of 3 pathological features at standardized anatomic areas. Further, we suggest reporting individual feature scores separately before relying on a single summed "synovitis" score. H&E or T-blue are preferred, inter-reader agreement for each feature should be considered.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39004209

RESUMO

OBJECTIVE: In the knee, synovial fibrosis after ligamentous injury is linked to progressive joint pain and stiffness. The objective of this study was to evaluate changes in synovial architecture, mechanical properties, and transcriptional profiles following naturally occurring cruciate ligament injury in canines and to test potential therapeutics that target drivers of synovial inflammation and fibrosis. DESIGN: Synovia from canines with spontaneous cruciate ligament tears and from healthy knees were assessed via histology (n=10/group) and micromechanical testing (n=5/group) to identify changes in tissue architecture and stiffness. Additional samples (n=5/group) were subjected to RNA-sequencing to define the transcriptional response to injury. Finally, synovial tissue samples from injured animals (n=6 (IL1) or n=8 (IL6)/group) were assessed in vitro for response to therapeutic molecules directed against interleukin (IL) signaling (IL1 or IL6). RESULTS: Cruciate injury resulted in increased synovial fibrosis, vascularity, inflammatory cell infiltration, and intimal hyperplasia. Additionally, the stiffness of both the intima and subintima regions were higher in diseased compared to healthy tissue. Differential gene expression analysis showed that diseased synovium had an upregulation of immune response and cell adhesion pathways and a downregulation of Rho protein transduction pathways. In vitro application of small molecule therapeutics targeting IL1 (anakinra) or IL6 (tocilizumab) dampened expression of inflammatory and matrix deposition mediators. CONCLUSION: Spontaneous cruciate ligament injury in canines is associated with synovial inflammation and fibrosis in a relevant model for testing emerging intra-articular treatments. Small molecule therapeutics targeting IL pathways may be ideal interventions for delivery to the joint space after injury.

4.
Curr Rheumatol Rep ; 26(4): 103-111, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38214806

RESUMO

PURPOSE OF THE REVIEW: Erosive hand osteoarthritis (EHOA) is an aggressive form of hand osteoarthritis that leads to significant disability, and recent data suggests that it is increasing in prevalence. This review provides an update of our current understanding of epidemiology, genetic associations, biomarkers, pathogenesis, and treatment of EHOA, with particular focus on studies published within the last 5 years. RECENT FINDINGS: New studies of EHOA have identified new genetic loci associated with disease, including variants in genes involved in inflammation and bone remodeling. Preclinical studies implicate pathways of innate immunity, including some that may be causal in the condition. Recent novel studies showed that inflammatory features identified by ultrasound and MRI are associated with development of erosive lesions over time on conventional radiography. In the future, these imaging modalities may be useful in identifying patients at risk of adverse outcomes. Promising new findings in genetics, biomarkers, and treatment targets will hopefully allow for future therapeutic options for this debilitating condition.


Assuntos
Articulação da Mão , Osteoartrite , Humanos , Articulação da Mão/diagnóstico por imagem , Articulação da Mão/patologia , Osteoartrite/epidemiologia , Osteoartrite/genética , Osteoartrite/terapia , Inflamação/patologia , Radiografia , Biomarcadores , Mãos/patologia
5.
Mol Genet Metab ; 138(2): 107371, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36709534

RESUMO

Mucopolysaccharidosis I is a lysosomal storage disorder characterized by deficient alpha-L-iduronidase activity, leading to abnormal accumulation of glycosaminoglycans in cells and tissues. Synovial joint disease is prevalent and significantly reduces patient quality of life. There is a critical need for improved understanding of joint disease pathophysiology in MPS I, including specific biomarkers to predict and monitor joint disease progression, and response to treatment. The objective of this study was to leverage the naturally-occurring MPS I canine model and undertake an unbiased proteomic screen to identify systemic biomarkers predictive of local joint disease in MPS I. Synovial fluid and serum samples were collected from MPS I and healthy dogs at 12 months-of-age, and protein abundance characterized using liquid chromatography tandem mass spectrometry. Stifle joints were evaluated postmortem using magnetic resonance imaging (MRI) and histology. Proteomics identified 40 proteins for which abundance was significantly correlated between serum and synovial fluid, including markers of inflammatory joint disease and lysosomal dysfunction. Elevated expression of three biomarker candidates, matrix metalloproteinase 19, inter-alpha-trypsin inhibitor heavy-chain 3 and alpha-1-microglobulin, was confirmed in MPS I cartilage, and serum abundance of these molecules was found to correlate with MRI and histological degenerative grades. The candidate biomarkers identified have the potential to improve patient care by facilitating minimally-invasive, specific assessment of joint disease progression and response to therapeutic intervention.


Assuntos
Artropatias , Mucopolissacaridose I , Cães , Animais , Mucopolissacaridose I/patologia , Proteômica , Qualidade de Vida , Artropatias/metabolismo , Líquido Sinovial/metabolismo , Biomarcadores/metabolismo , Progressão da Doença
6.
Clin Exp Rheumatol ; 37 Suppl 120(5): 57-63, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31621560

RESUMO

Although osteoarthritis (OA) was historically referred to as the non-inflammatory arthritis, it is now considered a condition involving persistent low-grade inflammation and activation of innate inflammatory pathways. Synovitis increases the risk of OA onset and progression and involves the recruitment of monocytes, lymphocytes, and other leukocytes. In particular, macrophages are important mediators of synovial inflammatory activity and pathologic cartilage and bone responses that are characteristic of OA. Advances in understanding how damage-associated molecular patterns (DAMPs) trigger monocyte/macrophage recruitment and activation in joints provide opportunities for disease-modifying therapies. However, the complexity and plasticity of macrophage phenotypes that exist in vivo have thus far prevented the successful development of macrophage-targeted treatments. Current studies show that synovial macrophages are derived from distinct cellular lineages, which correspond to unique functional roles for maintaining joint homeostasis. An improved understanding of the aetiology of synovial inflammation in specific OA-subtypes, such as with obesity or genetic risk, is a potential strategy for developing patient selection criteria for future precision therapies.


Assuntos
Macrófagos/imunologia , Osteoartrite , Sinovite , Humanos , Inflamação , Monócitos , Osteoartrite/imunologia , Osteoartrite/patologia , Sinovite/imunologia , Sinovite/patologia
8.
Curr Opin Rheumatol ; 29(1): 79-85, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27755180

RESUMO

PURPOSE OF REVIEW: Inflammatory changes in joint tissues can be detected by modern imaging techniques in osteoarthritis patients, but may be clinically subtle compared with many other types of arthritis. These changes associate with disease progression and clinical severity, and many inflammatory mediators may have biomarker utility. Moreover, a number of inflammatory mechanisms play a role in animal models of disease, but it is still not clear which mechanisms predominate and might be therapeutically manipulated most effectively. This review highlights specific examples of recent advances published in the past 18 months that have advanced this field. RECENT FINDINGS: Clinical investigators now show that synovial inflammation is associated with pain sensitization, and similar to knee osteoarthritis, is a common and important feature of hand osteoarthritis. In addition, recent advances in basic studies demonstrate inflammatory markers and mechanisms related to leukocyte activity, innate immune mechanisms, and the chondrocyte-intrinsic inflammatory response that might provide better opportunities for early detection, prognosis, or therapeutic intervention. SUMMARY: Inflammation plays a central role in osteoarthritis pathogenesis, but additional translational work in this field is necessary, as are more clinical trials of anti-inflammatory approaches.


Assuntos
Inflamação/complicações , Osteoartrite/etiologia , Animais , Progressão da Doença , Humanos , Inflamação/diagnóstico por imagem , Inflamação/patologia , Leucócitos/patologia , Obesidade/complicações , Osteoartrite/diagnóstico , Osteoartrite/patologia , Dor/etiologia , Sinovite/complicações , Sinovite/diagnóstico por imagem , Sinovite/patologia
9.
Arthritis Rheum ; 65(4): 981-92, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23400684

RESUMO

OBJECTIVE: The pathophysiology of the most common joint disease, osteoarthritis (OA), remains poorly understood. Since synovial fluid (SF) bathes joint cartilage and synovium, we reasoned that a comparative analysis of its protein constituents in health and OA could identify pathways involved in joint damage. We undertook this study to perform a proteomic analysis of knee SF from OA patients and control subjects and to compare the results to microarray expression data from cartilage and synovium. METHODS: Age-matched knee SF samples from 10 control subjects, 10 patients with early-stage OA, and 10 patients with late-stage OA were compared using 2-dimensional difference-in-gel electrophoresis and mass spectrometry (MS). MS with a multiplexed peptide selected reaction monitoring assay was used to confirm differential expression of a subset of proteins in an independent OA patient cohort. Proteomic results were analyzed by Ingenuity Pathways Analysis and compared to published synovial tissue and cartilage messenger RNA profiles. RESULTS: Sixty-six proteins were differentially present in healthy and OA SF. Three major pathways were identified among these proteins: the acute-phase response signaling pathway, the complement pathway, and the coagulation pathway. Differential expression of 5 proteins was confirmed by selected reaction monitoring assay. A focused analysis of transcripts corresponding to the differentially present proteins indicated that both synovial and cartilage tissues may contribute to the OA SF proteome. CONCLUSION: Proteins involved in the acute-phase response signaling pathway, the complement pathway, and the coagulation pathway are differentially regulated in SF from OA patients, suggesting that they contribute to joint damage. Validation of these pathways and their utility as biomarkers or therapeutic targets in OA is warranted.


Assuntos
Cartilagem/metabolismo , Osteoartrite do Joelho/metabolismo , Proteoma/análise , RNA Mensageiro/análise , Líquido Sinovial/metabolismo , Membrana Sinovial/metabolismo , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/metabolismo , Reação de Fase Aguda/metabolismo , Idoso , Fatores de Coagulação Sanguínea/genética , Fatores de Coagulação Sanguínea/metabolismo , Estudos de Casos e Controles , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/metabolismo , Eletroforese em Gel Bidimensional , Feminino , Perfilação da Expressão Gênica , Humanos , Articulação do Joelho/metabolismo , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Osteoartrite do Joelho/genética , Líquido Sinovial/química
10.
BMC Musculoskelet Disord ; 15: 281, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25138129

RESUMO

BACKGROUND: Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of innate immune cells with a granulocyte-like or monocyte-like phenotype and a unique ability to suppress T-cell responses. MDSCs have been shown to accumulate in cancer patients, but recent studies suggest that these cells are also present in humans and animals suffering from autoimmune diseases. We previously identified MDSCs in the synovial fluid (SF) of mice with experimental autoimmune arthritis. The goal of the present study was to identify MDSCs in the SF of patients with rheumatoid arthritis (RA). METHODS: RA SF cells were studied by flow cytometry using antibodies to MDSC cell surface markers as well as by analysis of cell morphology. The suppressor activity of RA SF cells toward autologous peripheral blood T cells was determined ex vivo. We employed both antigen-nonspecific (anti-CD3/CD28 antibodies) and antigen-specific (allogeneic cells) induction systems to test the effects of RA SF cells on the proliferation of autologous T cells. RESULTS: SF from RA patients contained MDSC-like cells, the majority of which showed granulocyte (neutrophil)-like phenotype and morphology. RA SF cells significantly suppressed the proliferation of anti-CD3/CD28-stimulated autologous T cells upon co-culture. When compared side by side, RA SF cells had a more profound inhibitory effect on the alloantigen-induced than the anti-CD3/CD28-induced proliferation of autologous T cells. CONCLUSION: MDSCs are present among RA SF cells that are commonly regarded as inflammatory neutrophils. Our results suggest that the presence of neutrophil-like MDSCs in the SF is likely beneficial, as these cells have the ability to limit the expansion of joint-infiltrating T cells in RA.


Assuntos
Artrite Reumatoide/imunologia , Imunidade Inata/imunologia , Leucócitos Mononucleares/imunologia , Líquido Sinovial/citologia , Líquido Sinovial/imunologia , Linfócitos T/imunologia , Adulto , Artrite Reumatoide/patologia , Técnicas de Cocultura , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto
11.
J Bone Miner Res ; 39(2): 161-176, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38477740

RESUMO

Osteoarthritis (OA) affects multiple tissues in the knee joint, including the synovium and intra-articular adipose tissue (IAAT) that are attached to each other. However, whether these two tissues share the same progenitor cells and hence function as a single unit in joint homeostasis and diseases is largely unknown. Single-cell transcriptomic profiling of synovium and infrapatellar fat pad (IFP), the largest IAAT, from control and OA mice revealed five mesenchymal clusters and predicted mesenchymal progenitor cells (MPCs) as the common progenitors for other cells: synovial lining fibroblasts (SLFs), myofibroblasts (MFs), and preadipocytes 1 and 2. Histologic examination of joints in reporter mice having Dpp4-CreER and Prg4-CreER that label MPCs and SLFs, respectively, demonstrated that Dpp4+ MPCs reside in the synovial sublining layer and give rise to Prg4+ SLFs and Perilipin+ adipocytes during growth and OA progression. After OA injury, both MPCs and SLFs gave rise to MFs, which remained in the thickened synovium at later stages of OA. In culture, Dpp4+ MPCs possessed mesenchymal progenitor properties, such as proliferation and multilineage differentiation. In contrast, Prg4+ SLFs did not contribute to adipocytes in IFP and Prg4+ cells barely grew in vitro. Taken together, we demonstrate that the synovium and joint fat pad are one integrated functional tissue sharing common mesenchymal progenitors and undergoing coordinated changes during OA progression.


Both synovium and intra-articular adipose tissue (IAAT) in knee joint play a critical role in joint health and osteoarthritis (OA) progression. Recent single-cell RNA-sequencing studies have been performed on the mouse and human synovium. However, IAATs residing in close proximity to the synovium have not been studied yet. Our study reveals mesenchymal cell heterogeneity of synovium/infrapatellar fat pad (Syn/IFP) tissue and their OA responses. We identify Dpp4+ multipotent progenitors as a source that give rise to Prg4+ lining layer fibroblasts in the synovium, adipocytes in the IFP, and myofibroblasts in the OA Syn/IFP tissue. Our work demonstrates that Syn/IFP is a functionally connected tissue that shares common mesenchymal progenitors and undergoes coordinated OA changes. This novel insight advances our knowledge of previously understudied joint tissues and provides new directions for drug discovery to treat joint disorders.


Assuntos
Tecido Adiposo , Células-Tronco Mesenquimais , Membrana Sinovial , Animais , Membrana Sinovial/patologia , Membrana Sinovial/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Camundongos , Osteoartrite/patologia , Osteoartrite/metabolismo , Patela/patologia , Patela/metabolismo
12.
Arthritis Rheum ; 64(7): 2268-77, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22492243

RESUMO

OBJECTIVE: Synovial inflammation, a feature of both osteoarthritis (OA) and meniscal injury, is hypothesized to be triggered in part via stimulation of Toll-like receptors (TLRs). We undertook this study to test whether a TLR-2- or TLR-4-stimulating factor in synovial fluid (SF) from patients with early knee OA with meniscal injury could lead to inflammatory activation of synoviocytes. METHODS: SF was obtained from patients with early OA cartilage damage undergoing arthroscopic meniscal procedures. SF was used to stimulate primary cultures of fibroblast-like synoviocytes (FLS) and cell lines transfected with TLR-2 or TLR-4. SF was used either alone or in combination with a TLR-2 stimulus (palmitoyl-3-cysteine-serine-lysine-4 [Pam3CSK4]) or a TLR-4 stimulus (lipopolysaccharide [LPS]). In blocking experiments, SF was preincubated with anti-CD14 antibody. RESULTS: SF from these patients did not stimulate interleukin-8 (IL-8) release from TLR transfectants. Compared with SF on its own, SF (at concentrations of 0.09-25%) in combination with TLR-2 or TLR-4 ligands resulted in significant augmentation of IL-8 release from both transfectants and primary FLS. Soluble CD14 (sCD14), a coreceptor for TLRs, was measured in SF from patients with early OA at levels comparable to those in patients with advanced OA and patients with rheumatoid arthritis. Blockade with anti-CD14 antibody abolished the ability of SF to augment IL-8 production in response to LPS, and diminished Pam3CSK4 responses. CONCLUSION: SF augments FLS responses to TLR-2 and TLR-4 ligands. This effect was largely due to sCD14. Our results demonstrate that sCD14 in the setting of OA and meniscal injury sensitizes FLS to respond to inflammatory stimuli such as TLR ligands.


Assuntos
Receptores de Lipopolissacarídeos/metabolismo , Osteoartrite do Joelho/metabolismo , Líquido Sinovial/metabolismo , Membrana Sinovial/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Idoso , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Feminino , Humanos , Lipopeptídeos/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/patologia , Líquido Sinovial/efeitos dos fármacos , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/patologia , Receptor 2 Toll-Like/agonistas , Receptor 4 Toll-Like/agonistas
13.
J Am Acad Orthop Surg ; 21 Suppl 1: S33-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23818189

RESUMO

Future clinical trials investigating the natural history and treatment of femoroacetabular impingement (FAI) will require multimodal staging systems for hip osteoarthritis because the optimal system will differ based on the size of the study population, the specific objective in question, and the time frame in which the investigator expects to see the specified end point. Plain radiographs are readily available, low in cost, and of unquestioned validity, but they are relatively insensitive to early joint damage. MRI allows assessment of both bony and soft-tissue pathology within the joint, and it is much more sensitive for early joint damage because cartilage is visualized directly. Biochemical imaging techniques such as delayed gadolinium-enhanced MRI of cartilage, T2 mapping, and T1rho offer the potential to identify biochemical damage to cartilage before the onset of irreversible tissue loss. In the future, biomarkers may allow earlier detection of osteoarthritis before the development of radiographic evidence of disease.


Assuntos
Impacto Femoroacetabular/complicações , Osteoartrite do Quadril/diagnóstico , Osteoartrite do Quadril/etiologia , Ensaios Clínicos como Assunto , Previsões , Gadolínio , Humanos , Imageamento por Ressonância Magnética
14.
Mol Ther Methods Clin Dev ; 28: 12-26, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36570425

RESUMO

Mucopolysaccharidosis (MPS) VII is an inherited lysosomal storage disorder characterized by deficient activity of the enzyme ß-glucuronidase. Skeletal abnormalities are common in patients and result in diminished quality of life. Enzyme replacement therapy (ERT) for MPS VII using recombinant human ß-glucuronidase (vestronidase alfa) was recently approved for use in patients; however, to date there have been no studies evaluating therapeutic efficacy in a large animal model of MPS VII. The objective of this study was to establish the effects of intravenous ERT, administered at either the standard clinical dose (4 mg/kg) or a high dose (20 mg/kg), on skeletal disease progression in MPS VII using the naturally occurring canine model. Untreated MPS VII animals exhibited progressive synovial joint and vertebral bone disease and were no longer ambulatory by age 6 months. Standard-dose ERT-treated animals exhibited modest attenuation of joint disease, but by age 6 months were no longer ambulatory. High-dose ERT-treated animals exhibited marked attenuation of joint disease, and all were still ambulatory by age 6 months. Vertebral bone disease was recalcitrant to ERT irrespective of dose. Overall, our findings indicate that ERT administered at higher doses results in significantly improved skeletal disease outcomes in MPS VII dogs.

15.
Arthritis Rheumatol ; 75(10): 1770-1780, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37096632

RESUMO

OBJECTIVE: Osteoarthritis (OA) is a leading cause of chronic pain, yet OA pain management remains poor. Age is the strongest predictor of OA development, and mechanisms driving OA pain are unclear. We undertook this study to characterize age-associated changes in knee OA, pain-related behaviors, and dorsal root ganglion (DRG) molecular phenotypes in mice of both sexes. METHODS: Male or female C57BL/6 mice 6 or 20 months of age were evaluated for histopathologic knee OA, pain-related behaviors, and L3-L5 DRG immune characterization via flow cytometry. DRG gene expression in older mice and humans was also examined. RESULTS: Male mice at 20 months of age had worse cartilage degeneration than 6-month-old mice. Older female mouse knees showed increased cartilage degeneration but to a lesser degree than those of male mice. Older mice of both sexes had worse mechanical allodynia, knee hyperalgesia, and grip strength compared to younger mice. For both sexes, DRGs from older mice showed decreased CD45+ cells and a significant increase in F4/80+ macrophages and CD11c+ dendritic cells. Older male mouse DRGs showed increased expression of Ccl2 and Ccl5, and older female mouse DRGs showed increased Cxcr4 and Ccl3 expression compared to 6-month-old mouse DRGs, among other differentially expressed genes. Human DRG analysis from 6 individuals >80 years of age revealed elevated CCL2 in men compared to women, whereas CCL3 was higher in DRGs from women. CONCLUSION: We found that aging in male and female mice is accompanied by mild knee OA, mechanical sensitization, and changes to immune cell populations in the DRG, suggesting novel avenues for development of OA therapies.


Assuntos
Osteoartrite do Joelho , Camundongos , Humanos , Feminino , Masculino , Animais , Lactente , Osteoartrite do Joelho/complicações , Gânglios Espinais/metabolismo , Imunofenotipagem , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Dor/etiologia , Hiperalgesia/metabolismo
16.
bioRxiv ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37904981

RESUMO

Background: Synovial pathology has been linked to osteoarthritis (OA) pain in patients. Microscopic grading systems for synovial changes in human OA have been described, but a standardized approach for murine models of OA is needed. We sought to develop a reproducible approach and set of minimum recommendations for synovial histopathology in mouse models of OA. Methods: Coronal and sagittal sections from male mouse knee joints subjected to destabilization of medial meniscus (DMM) or partial meniscectomy (PMX) were collected as part of other studies. Stains included Hematoxylin and Eosin (H&E), Toluidine Blue (T-Blue) and Safranin O/Fast Green (Saf-O). Four blinded readers graded pathological features (hyperplasia, cellularity, and fibrosis) at specific anatomic locations in the medial and lateral compartments. Inter-reader reliability of each feature was determined. Results: There was acceptable to very good agreement between raters. After DMM, increased hyperplasia and cellularity and a trend towards increased fibrosis were observed 6 weeks after DMM in the medial locations, and persisted up to 16 weeks. In the PMX model, cellularity and hyperplasia were evident in both medial and lateral compartments while fibrotic changes were largely seen on the medial side. Synovial changes were consistent from section to section in the mid-joint area mice. H&E, T-blue, and Saf-O stains resulted in comparable reliability. Conclusions: To allow for a standard evaluation that can be implemented and compared across labs and studies, we recommend using 3 readers to evaluate a minimum set of 3 pathological features at standardized anatomic areas. Pre-defining areas to be scored, and reliability for each pathologic feature should be considered.

17.
ACR Open Rheumatol ; 5(10): 529-535, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37740448

RESUMO

OBJECTIVE: To quantify the effect of corticosteroids compared to lidocaine-only injections over 12 weeks among patients with knee osteoarthritis (KOA). METHODS: Participants with KOA were randomized to receive a knee injection of methylprednisolone acetate 1 mL (40 mg) plus 2 mL lidocaine (1%) or 1 mL saline and 2 mL lidocaine. Participants and providers were blinded to treatment allocation using an opacified syringe. The outcome was the average change from baseline of the total Knee Injury and Osteoarthritis Outcome Score (KOOS) (range 0-100) assessed at 2-week intervals over 12 weeks. Participants received KOOS questionnaires on their smartphones through a web-based platform. We used linear mixed-effects regressions with robust variance estimators to evaluate the association between the intervention and change in KOOS total and subscales (ClinicalTrials.gov identifier NCT03835910; registered 2019-02-11). RESULTS: Of the 33 randomized participants, 31 were included in the final analysis. The predicted mean (SE) change in total KOOS over the 12-week follow-up was 9.4 (3.2) in the corticosteroids arm versus -1.3 (1.4) in the control arm (P = 0.003). Of participants, 47% achieved change as large as the minimal clinically important difference (16 units) in the intervention arm compared to 6% of participants in the lidocaine arm. Further, there were greater improvements in the intervention arm for KOOS subscales and for Patient Reported Outcomes Measurement Information System (PROMIS) assessments of pain intensity, behavior, and interference. CONCLUSION: Corticosteroid injections demonstrated clinically meaningful improvements in KOA symptoms over 12 weeks of follow-up. These data support larger studies to better quantify short-term benefits.

18.
Osteoarthr Cartil Open ; 5(4): 100416, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107076

RESUMO

Objective: To develop an imaging mass cytometry method for identifying complex cell phenotypes, inter-cellular interactions, and population changes in the synovium and infrapatellar fat pad (IFP) of the mouse knee following a non-invasive compression injury. Design: Fifteen male C57BL/6 mice were fed a high-fat diet for 8 weeks prior to random assignment to sham, 0.88 â€‹mm, or 1.7 â€‹mm knee compression displacement at 24 weeks of age. 2-weeks after loading, limbs were prepared for histologic and imaging mass cytometry analysis, focusing on myeloid immune cell populations in the synovium and IFP. Results: 1.7 â€‹mm compression caused anterior cruciate ligament (ACL) rupture, development of post-traumatic osteoarthritis, and a 2- to 3-fold increase in cellularity of synovium and IFP tissues compared to sham or 0.88 â€‹mm compression. Imaging mass cytometry identified 11 myeloid cell subpopulations in synovium and 7 in IFP, of which approximately half were elevated 2 weeks after ACL injury in association with the vasculature. Notably, two monocyte/macrophage subpopulations and an MHC IIhi population were elevated 2-weeks post-injury in the synovium but not IFP. Vascular and immune cell interactions were particularly diverse in the synovium, incorporating 8 unique combinations of 5 myeloid cell populations, including a monocyte/macrophage population, an MHC IIhi population, and 3 different undefined F4/80+ myeloid populations. Conclusions: Developing an imaging mass cytometry method for the mouse enabled us to identify a diverse array of synovial and IFP vascular-associated myeloid cell subpopulations. These subpopulations were differentially elevated in synovial and IFP tissues 2-weeks post injury, providing new details on tissue-specific immune regulation.

19.
Arthritis Rheum ; 63(2): 391-400, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21279996

RESUMO

OBJECTIVE: Traumatic and degenerative meniscal tears have different anatomic features and different proposed etiologies, yet both are associated with the development or progression of osteoarthritis (OA). In established OA, synovitis is associated with pain and progression, but a relationship between synovitis and symptoms in isolated meniscal disease has not been reported. Accordingly, we sought to characterize synovial pathology in patients with traumatic meniscal injuries and determine the relationships between inflammation, meniscal and cartilage pathology, and symptoms. METHODS: Thirty-three patients without evidence of OA who were undergoing arthroscopic meniscectomy for meniscal injuries were recruited. Pain and function were assessed preoperatively; meniscal and cartilage abnormalities were documented at the time of surgery. Inflammation in synovial biopsy specimens was scored, and associations between inflammation and clinical outcomes were determined. Microarray analysis of synovial tissue was performed, and gene expression patterns in patients with and those without inflammation were compared. RESULTS: Synovial inflammation was present in 43% of the patients and was associated with worse preoperative pain and function scores, independent of age, sex, or cartilage pathology. Microarray analysis and real-time polymerase chain reaction revealed a chemokine signature in synovial biopsy specimens with increased inflammation scores. CONCLUSION: Our findings indicate that in patients with traumatic meniscal injury undergoing arthroscopic meniscectomy without radiographic evidence of OA, synovial inflammation occurs frequently and is associated with increased pain and dysfunction. Synovia with increased inflammation scores exhibit a unique chemokine signature. Chemokines may contribute to the development of synovial inflammation in patients with meniscal pathology; they also represent potential therapeutic targets for reducing inflammatory symptoms.


Assuntos
Artroscopia/métodos , Meniscos Tibiais/patologia , Osteoartrite do Joelho/patologia , Sinovite/patologia , Adulto , Idoso , Cartilagem Articular/patologia , Cartilagem Articular/cirurgia , Quimiocinas/genética , Quimiocinas/metabolismo , Avaliação da Deficiência , Feminino , Expressão Gênica , Nível de Saúde , Humanos , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Articulação do Joelho/fisiopatologia , Masculino , Massachusetts/epidemiologia , Meniscos Tibiais/cirurgia , Pessoa de Meia-Idade , Osteoartrite do Joelho/metabolismo , Dor/patologia , Dor/fisiopatologia , RNA Mensageiro/metabolismo , Sinovite/epidemiologia , Sinovite/metabolismo , Lesões do Menisco Tibial
20.
J Inflamm Res ; 15: 2413-2424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444450

RESUMO

Objective: To examine the effects of human interleukin (IL) 8 expression on mouse behavior. Methods: A mouse line expressing human IL8 in the intervertebral discs (IVD) and cartilaginous tissues (hIL8+ ) was generated. Mouse spontaneous behaviors, including locomotion, climbing, rearing, grooming, eating, drinking, and immobility were recorded with a fully automatic, non-invasive platform. Results: Distance traveled by the hIL8+ mice declined with age compared with control littermates, and male hIL8+ mice traveled a shorter distance than male controls and females of either genotype (p <0.05). The hIL8+ mice also spent less time in locomotion than control mice (p <0.01), and male hIL8+ mice spent the least amount of time and had lowest count in locomotion compared with the other 3 groups at 12 weeks of age or greater (p <0.05). The hIL8+ mice spent less time climbing than controls, and male mice spent less time climbing than female mice of the same genotype (p <0.01). The hIL8+ mice spent more time eating and less time drinking than controls, and all mice spent less time eating and more time drinking with increasing age. Finally, hIL8+ mice spent more time immobile than controls, and male hIL8+ mice spent more time immobile than any other group (p <0.05). Conclusion: The hIL8+ mice, especially hIL8+ males, showed reduced ambulation and climbing. Mice showed age-related decrease in eating and increase in drinking and grooming time that was also influenced by expression of hIL8. These changes in natural behaviors in control mice are consistent with functional decline with age. Effects of hIL8 superimposed on the natural aging process could involve systemic (e.g., on the brain) and local (e.g., in the spine and joint tissues) mechanisms. Future exploration of these mechanisms might be productive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA