Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Angiogenesis ; 17(1): 195-205, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24127199

RESUMO

Survival of tissue engineered constructs after implantation depends heavily on induction of a vascular response in host tissue, promoting a quick anastomosis of the cellular graft. Additionally, implanted constructs typically induce fibrous capsule formation, effectively preventing graft integration with host tissue. Previously we described the development of a high density microtemplated fibrin scaffold for cardiac tissue engineering applications with tunable degradation and mechanical properties which promoted seeded cell survival and organization in vitro (Thomson et al., Tissue Eng Part A, 2013). Scaffold degradation in vitro was controllable by addition of the serine protease inhibitor aprotinin and/or the fibrin cross-linker Factor XIII (FXIII). The goal of this study was to assess host tissue responses to these fibrin scaffold formulations by determining effects on scaffold degradation, angiogenic responses, and fibrous capsule formation in a subcutaneous implant model. Aprotinin significantly decreased scaffold degradation over 2 weeks of implantation. A significant increase in capillary infiltration of aprotinin implants was found after 1 and 2 weeks, with a significantly greater amount of capillaries reaching the interior of aprotinin scaffolds. Interestingly, after 2 weeks the aprotinin scaffolds had a significantly thinner, yet apparently more cellular fibrous capsule than unmodified scaffolds. These results indicate aprotinin not only inhibits fibrin scaffold degradation, but also induces significant responses in the host tissue. These included an angiogenic response resulting in increased vascularization of the scaffold material over a relatively short period of time. In addition, aprotinin release from scaffolds may reduce fibrous capsule formation, which could help promote improved integration of cell-seeded scaffolds with host tissue.


Assuntos
Implantes Absorvíveis , Aprotinina , Hemostáticos , Neovascularização Fisiológica/efeitos dos fármacos , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos , Animais , Aprotinina/química , Aprotinina/farmacologia , Fator XIII/química , Fator XIII/farmacologia , Fibrina/química , Fibrina/farmacologia , Hemostáticos/química , Hemostáticos/farmacologia , Masculino , Ratos , Ratos Endogâmicos F344
2.
J Vasc Res ; 51(2): 118-31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24642764

RESUMO

OBJECTIVE: Vascular calcification is highly correlated with cardiovascular disease morbidity and mortality. Osteoprotegerin (OPG) is a secreted decoy receptor for receptor activator of NF-κB ligand (RANKL). Inactivation of OPG in apolipoprotein E-deficient (ApoE-/-) mice increases lesion size and calcification. The mechanism(s) by which OPG is atheroprotective and anticalcific have not been entirely determined. We investigated whether OPG-deficient vascular smooth muscle cells (VSMCs) are more susceptible to mineralization and whether RANKL mediates this process. RESULTS: Lesion-free aortas from 12-week-old ApoE-/-OPG-/- mice had spotty calcification, an appearance of osteochondrogenic factors and a decrease of smooth muscle markers when compared to ApoE-/-OPG+/+ aortas. In osteogenic conditions, VSMCs isolated from ApoE-/-OPG-/- (KO-VSMC) mice deposited more calcium than VSMCs isolated from ApoE-/-OPG+/+ (WT-VSMC) mice. Gene expression and biochemical analysis indicated accelerated osteochondrogenic differentiation. Ablation of RANKL signaling in KO-VSMCs rescued the accelerated calcification. While WT-VSMCs did not respond to RANKL treatment, KO-VSMCs responded with enhanced calcification and the upregulation of osteochondrogenic genes. RANKL strongly induced interleukin 6 (IL-6), which partially mediated RANKL-dependent calcification and gene expression in KO-VSMCs. CONCLUSIONS: OPG inhibits vascular calcification by regulating the procalcific effects of RANKL on VSMCs and is thus a possible target for therapeutic intervention.


Assuntos
Apolipoproteínas E/deficiência , Interleucina-6/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Osteoprotegerina/deficiência , Ligante RANK/metabolismo , Transdução de Sinais , Calcificação Vascular/metabolismo , Animais , Apolipoproteínas E/genética , Diferenciação Celular , Células Cultivadas , Condrogênese , Genótipo , Camundongos , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Osteogênese , Osteoprotegerina/genética , Fenótipo , Ligante RANK/genética , Interferência de RNA , Transdução Genética , Calcificação Vascular/genética , Calcificação Vascular/patologia , Calcificação Vascular/prevenção & controle
3.
J Vis Exp ; (205)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38587386

RESUMO

This protocol details the propagation and passaging of human iPSCs and their differentiation into osteoclasts. First, iPSCs are dissociated into a single-cell suspension for further use in embryoid body induction. Following mesodermal induction, embryoid bodies undergo hematopoietic differentiation, producing a floating hematopoietic cell population. Subsequently, the harvested hematopoietic cells undergo a macrophage colony-stimulating factor maturation step and, finally, osteoclast differentiation. After osteoclast differentiation, osteoclasts are characterized by staining for TRAP in conjunction with a methyl green nuclear stain. Osteoclasts are observed as multinucleated, TRAP+ polykaryons. Their identification can be further supported by Cathepsin K staining. Bone and mineral resorption assays allow for functional characterization, confirming the identity of bona fide osteoclasts. This protocol demonstrates a robust and versatile method to differentiate human osteoclasts from iPSCs and allows for easy adoption in applications requiring large quantities of functional human osteoclasts. Applications in the areas of bone research, cancer research, tissue engineering, and endoprosthesis research could be envisioned.


Assuntos
Reabsorção Óssea , Células-Tronco Pluripotentes Induzidas , Humanos , Osteoclastos , Diferenciação Celular , Fator Estimulador de Colônias de Macrófagos/farmacologia , Osso e Ossos , Glicoproteínas de Membrana , Ligante RANK
4.
J Cell Biochem ; 114(5): 1194-202, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23192608

RESUMO

Osteopontin (OPN) is highly expressed by macrophages and plays a key role in the pathology of several chronic inflammatory diseases including atherosclerosis and the foreign body reaction. However, the molecular mechanism behind OPN regulation of macrophage functions is not well understood. OPN is a secreted molecule and interacts with several integrins via two domains: the RGD sequence binding to α(v) -containing integrins, and the SLAYGLR sequence binding to α(4) ß(1), α(4) ß(7), and α(9) ß(1) integrins. Here we determined the role of OPN in macrophage survival, chemotaxis, and activation state. For survival studies, OPN treated-bone marrow derived macrophages (BMDMs) were challenged with growth factor withdrawal and neutralizing integrin antibodies. We found that survival in BMDMs is mediated primarily through the α(4) integrin. In chemotaxis studies, we observed that migration to OPN was blocked by neutralizing α(4) and α(9) integrin antibodies. Further, OPN did not affect macrophage activation as measured by IL-12 production. Finally, the relative contributions of the RGD and the SLAYGLR functional domains of OPN to leukocyte recruitment were evaluated in an in vivo model. We generated chimeric mice expressing mutated forms of OPN in myeloid-derived leukocytes, and found that the SLAYGLR functional domain of OPN, but not the RGD, mediates macrophage accumulation in response to thioglycollate-elicited peritonitis. Collectively, these data indicate that α(4) and α(9) integrins interacting with OPN via the SLAYGLR domain play a key role in macrophage biology by regulating migration, survival, and accumulation.


Assuntos
Quimiotaxia , Cadeias alfa de Integrinas/metabolismo , Integrina alfa4/metabolismo , Macrófagos/citologia , Osteopontina/metabolismo , Sequência de Aminoácidos , Animais , Células da Medula Óssea/citologia , Sobrevivência Celular , Citocinas/biossíntese , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Osteopontina/química , Peritonite/metabolismo , Peritonite/patologia , Fenótipo , Estrutura Terciária de Proteína , Transdução de Sinais , Relação Estrutura-Atividade , Tioglicolatos
5.
Res Sq ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461708

RESUMO

Background: Ever since their discovery, induced pluripotent stem cells (iPSCs) have been extensively differentiated into a large variety of cell types. However, a limited amount of work has been dedicated to differentiating iPSCs into osteoclasts. While several differentiation protocols have been published, it remains unclear which protocols or differentiation methods are preferrable regarding the differentiation of osteoclasts. Methods: In this study we compare the osteoclastogenesis capacity of a peripheral blood mononuclear cell (PBMC)-derived iPSC line to a fibroblast-derived iPSC line in conjunction with either embryoid body-based or monolayer-based differentiation strategies. Both cell lines and differentiation protocols were investigated regarding their ability to generate osteoclasts and their inherent robustness and ease of use. The ability of both cell lines to remain undifferentiated while propagating using a feeder-free system was assessed using alkaline phosphatase staining. This was followed by evaluating mesodermal differentiation and the characterization of hematopoietic progenitor cells using flow cytometry. Finally, osteoclast yield and functionality based on resorptive activity, Cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression were assessed. Results were validated using qRT-PCR throughout the differentiation stages. Results: Embryoid-body based differentiation yielded CD45+, CD14+, CD11b+ subpopulations which in turn differentiated into osteoclasts which demonstrated TRAP positivity, Cathepsin K expression and mineral resorptive capabilities. This was regardless of which iPSC line was used. Monolayer-based differentiation yielded lower quantities of hematopoietic cells that were mostly CD34+ and did not subsequently differentiate into osteoclasts. Conclusions: The outcome of this study demonstrates the successful differentiation of osteoclasts from iPSCs in conjunction with the embryoid-based differentiation method, while the monolayer-based method did not yield osteoclasts. No differences were observed regarding osteoclast differentiation between the PBMC and fibroblast-derived iPSC lines.

6.
Stem Cell Res Ther ; 14(1): 319, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936199

RESUMO

BACKGROUND: Ever since their discovery, induced pluripotent stem cells (iPSCs) have been extensively differentiated into a large variety of cell types. However, a limited amount of work has been dedicated to differentiating iPSCs into osteoclasts. While several differentiation protocols have been published, it remains unclear which protocols or differentiation methods are preferable regarding the differentiation of osteoclasts. METHODS: In this study, we compared the osteoclastogenesis capacity of a peripheral blood mononuclear cell (PBMC)-derived iPSC line to a fibroblast-derived iPSC line in conjunction with either embryoid body-based or monolayer-based differentiation strategies. Both cell lines and differentiation protocols were investigated regarding their ability to generate osteoclasts and their inherent robustness and ease of use. The ability of both cell lines to remain undifferentiated while propagating using a feeder-free system was assessed using alkaline phosphatase staining. This was followed by evaluating mesodermal differentiation and the characterization of hematopoietic progenitor cells using flow cytometry. Finally, osteoclast yield and functionality based on resorptive activity, Cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression were assessed. The results were validated using qRT-PCR throughout the differentiation stages. RESULTS: Embryoid body-based differentiation yielded CD45+, CD14+, CD11b+ subpopulations which in turn differentiated into osteoclasts which demonstrated TRAP positivity, Cathepsin K expression and mineral resorptive capabilities. This was regardless of which iPSC line was used. Monolayer-based differentiation yielded lower quantities of hematopoietic cells that were mostly CD34+ and did not subsequently differentiate into osteoclasts. CONCLUSIONS: The outcome of this study demonstrates the successful differentiation of osteoclasts from iPSCs in conjunction with the embryoid-based differentiation method, while the monolayer-based method did not yield osteoclasts. No differences were observed regarding osteoclast differentiation between the PBMC and fibroblast-derived iPSC lines.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Osteoclastos , Leucócitos Mononucleares , Catepsina K/metabolismo , Diferenciação Celular
7.
J Vasc Res ; 49(6): 510-21, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22948607

RESUMO

BACKGROUND: Vascular calcification is highly correlated with cardiovascular disease (CVD) morbidity and mortality, and it is associated with inflammation. Receptor activator of NF-ĸB ligand (RANKL) inhibition in vivo has been shown to reduce vascular calcification in a mouse model of atherosclerosis. Therefore, we tested the hypothesis that RANKL regulates smooth muscle cell (SMC) calcification by modulating macrophage production of pro-calcific cytokines. METHODS: We used a bone marrow-derived macrophage (BMDM)/SMC co-culture system and examined the effects of RANKL on BMDM activation and SMC matrix calcification. RESULTS: Treatment with RANKL alone did not stimulate SMC calcification induced by elevated phosphate. BMDMs differentiated with macrophage colony-stimulating factor and placed in co-culture with SMCs increased phosphate-induced SMC calcification. RANKL added to the BMDM/SMC co-cultures further enhanced SMC calcification. Treatment of BMDMs with RANKL resulted in increased expression of IL-6 and TNF-α. Thus, increased expression of these pro-calcific cytokines in macrophages may mediate RANKL-induced SMC calcification in a paracrine fashion. Addition of neutralizing IL-6 and TNF-α antibodies together with RANKL treatment significantly reduced the RANKL induction of SMC calcification. CONCLUSION: RANKL activation of pro-inflammatory and pro-calcific pathways in macrophages may contribute to vascular calcification and inflammation.


Assuntos
Calcinose/etiologia , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fosfatos/farmacologia , Ligante RANK/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Calcinose/complicações , Técnicas de Cocultura , Citocinas , Interleucina-6/farmacologia , Macrófagos/metabolismo , Camundongos , Miócitos de Músculo Liso/metabolismo , Osteoclastos/citologia , Osteoprotegerina/biossíntese , Ligante RANK/biossíntese , Receptor Ativador de Fator Nuclear kappa-B/biossíntese , Fator de Necrose Tumoral alfa/farmacologia
8.
Arterioscler Thromb Vasc Biol ; 30(1): 80-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19875721

RESUMO

OBJECTIVE: Human embryonic stem cells (hESCs) offer a sustainable source of endothelial cells for therapeutic vascularization and tissue engineering, but current techniques for generating these cells remain inefficient. We endeavored to induce and isolate functional endothelial cells from differentiating hESCs. METHODS AND RESULTS: To enhance endothelial cell differentiation above a baseline of approximately 2% in embryoid body (EB) spontaneous differentiation, 3 alternate culture conditions were compared. Vascular endothelial growth factor (VEGF) treatment of EBs showed the best induction, with markedly increased expression of endothelial cell proteins CD31, VE-Cadherin, and von Willebrand Factor, but not the hematopoietic cell marker CD45. CD31 expression peaked around days 10 to 14. Continuous VEGF treatment resulted in a 4- to 5-fold enrichment of CD31(+) cells but did not increase endothelial proliferation rates, suggesting a primary effect on differentiation. CD31(+) cells purified from differentiating EBs upregulated ICAM-1 and VCAM-1 in response to TNFalpha, confirming their ability to function as endothelial cells. These cells also expressed multiple endothelial genes and formed lumenized vessels when seeded onto porous poly(2-hydroxyethyl methacrylate) scaffolds and implanted in vivo subcutaneously in athymic rats. Collagen gel constructs containing hESC-derived endothelial cells and implanted into infarcted nude rat hearts formed robust networks of patent vessels filled with host blood cells. CONCLUSIONS: VEGF induces functional endothelial cells from hESCs independent of endothelial cell proliferation. This enrichment method increases endothelial cell yield, enabling applications for revascularization as well as basic studies of human endothelial biology. We demonstrate the ability of hESC-derived endothelial cells to facilitate vascularization of tissue-engineered implants.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células Endoteliais/citologia , Traumatismo por Reperfusão Miocárdica/terapia , Engenharia Tecidual/métodos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Colágeno , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Laminina , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Proteoglicanas , Ratos , Ratos Nus , Células U937 , Veias Umbilicais/citologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Bone ; 153: 116144, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34375732

RESUMO

Medication-related osteonecrosis of the jaw (MRONJ) is a serious side effect of antiresorptive medications such as denosumab (humanized anti-RANKL antibody), yet its pathophysiology remains elusive. It has been posited that inhibition of osteoclastic bone resorption leads to the pathological sequelae of dead bone accumulation, impaired new bone formation, and poor wound healing in MRONJ, but this hypothesis has not been definitively tested. We previously engineered myeloid precursors with a conditional receptor activator of nuclear factor kappa-Β intracellular domain (iRANK cells), which differentiate into osteoclasts in response to a chemical inducer of dimerization (CID) independently of RANKL. In this study, we showed that CID-treated iRANK cells differentiated into osteoclasts and robustly resorbed mineralized surfaces even in the presence of anti-RANKL antibody in vitro. We then developed a tooth extraction-triggered MRONJ model in nude mice using anti-RANKL antibody to deplete osteoclasts. This model was used to determine whether reconstitution of engineered osteoclasts within sockets could prevent specific pathological features of MRONJ. Locally delivered iRANK cells successfully differentiated into multinucleated osteoclasts in response to CID treatment in vivo as measured by green fluorescent protein (GFP), tartrate-resistant acid phosphatase (TRAP), carbonic anhydrase II, matrix metallopeptidase 9 (MMP-9), and cathepsin K staining. Sockets treated with iRANK cells + CID had significantly more osteoclasts and less necrotic bone than those receiving iRANK cells alone. These data support the hypothesis that osteoclast deficiency leads to accumulation of necrotic bone in MRONJ.


Assuntos
Conservadores da Densidade Óssea , Reabsorção Óssea , Osteonecrose , Animais , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular , Camundongos , Camundongos Nus , Osteoclastos , Ligante RANK
10.
Front Cardiovasc Med ; 8: 687210, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778386

RESUMO

Background: Calcific aortic valve disease is common in the aging population and is characterized by the histological changes of the aortic valves including extracellular matrix remodeling, osteochondrogenic differentiation, and calcification. Combined, these changes lead to aortic sclerosis, aortic stenosis (AS), and eventually to heart failure. Runt-related transcription factor 2 (Runx2) is a transcription factor highly expressed in the calcified aortic valves. However, its definitive role in the progression of calcific aortic valve disease (CAVD) has not been determined. In this study, we utilized constitutive and transient conditional knockout mouse models to assess the molecular, histological, and functional changes in the aortic valve due to Runx2 depletion. Methods: Lineage tracing studies were performed to determine the provenance of the cells giving rise to Runx2+ osteochondrogenic cells in the aortic valves of LDLr-/- mice. Hyperlipidemic mice with a constitutive or temporal depletion of Runx2 in the activated valvular interstitial cells (aVICs) and sinus wall cells were further investigated. Following feeding with a diabetogenic diet, the mice were examined for changes in gene expression, blood flow dynamics, calcification, and histology. Results: The aVICs and sinus wall cells gave rise to Runx2+ osteochondrogenic cells in diseased mouse aortic valves. The conditional depletion of Runx2 in the SM22α+ aVICs and sinus wall cells led to the decreased osteochondrogenic gene expression in diabetic LDLr-/- mice. The transient conditional depletion of Runx2 in the aVICs and sinus wall cells of LDLr-/-ApoB100 CAVD mice early in disease led to a significant reduction in the aortic peak velocity, mean velocity, and mean gradient, suggesting the causal role of Runx2 on the progression of AS. Finally, the leaflet hinge and sinus wall calcification were significantly decreased in the aortic valve following the conditional and temporal Runx2 depletion, but no significant effect on the valve cusp calcification or thickness was observed. Conclusions: In the aortic valve disease, Runx2 was expressed early and was required for the osteochondrogenic differentiation of the aVICs and sinus wall cells. The transient depletion of Runx2 in the aVICs and sinus wall cells in a mouse model of CAVD with a high prevalence of hemodynamic valve dysfunction led to an improved aortic valve function. Our studies also suggest that leaflet hinge and sinus wall calcification, even in the absence of significant leaflet cusp calcification, may be sufficient to cause significant valve dysfunctions in mice.

11.
JCI Insight ; 6(1)2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33232305

RESUMO

Cardiopulmonary bypass (CPB) is required during most cardiac surgeries. CBP drives systemic inflammation and multiorgan dysfunction that is especially severe in neonatal patients. Limited understanding of molecular mechanisms underlying CPB-associated inflammation presents a significant barrier to improve clinical outcomes. To better understand these clinical issues, we performed mRNA sequencing on total circulating leukocytes from neonatal patients undergoing CPB. Our data identify myeloid cells, particularly monocytes, as the major cell type driving transcriptional responses to CPB. Furthermore, IL-8 and TNF-α were inflammatory cytokines robustly upregulated in leukocytes from both patients and piglets exposed to CPB. To delineate the molecular mechanism, we exposed THP-1 human monocytic cells to CPB-like conditions, including artificial surfaces, high shear stress, and cooling/rewarming. Shear stress was found to drive cytokine upregulation via calcium-dependent signaling pathways. We also observed that a subpopulation of THP-1 cells died via TNF-α-mediated necroptosis, which we hypothesize contributes to post-CPB inflammation. Our study identifies a shear stress-modulated molecular mechanism that drives systemic inflammation in pediatric CPB patients. These are also the first data to our knowledge to demonstrate that shear stress causes necroptosis. Finally, we observe that calcium and TNF-α signaling are potentially novel targets to ameliorate post-CPB inflammation.


Assuntos
Ponte Cardiopulmonar/efeitos adversos , Citocinas/genética , Monócitos/imunologia , Monócitos/patologia , Animais , Animais Recém-Nascidos , Sinalização do Cálcio , Citocinas/biossíntese , Feminino , Cardiopatias Congênitas/cirurgia , Humanos , Lactente , Recém-Nascido , Mediadores da Inflamação/metabolismo , Interleucina-8/biossíntese , Interleucina-8/genética , Masculino , Modelos Animais , Monócitos/fisiologia , Necroptose/genética , Necroptose/fisiologia , RNA-Seq , Estresse Mecânico , Sus scrofa , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Síndrome de Resposta Inflamatória Sistêmica/genética , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Células THP-1 , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética , Regulação para Cima
12.
Biomaterials ; 240: 119856, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32105818

RESUMO

Tissue engineering aims to capture the structural and functional aspects of diverse tissue types in vitro. However, most approaches are limited in their ability to produce complex 3D geometries that are essential for tissue function. Tissues, such as the vasculature or chambers of the heart, often possess curved surfaces and hollow lumens that are difficult to recapitulate given their anisotropic architecture. Cell-sheet engineering techniques using thermoresponsive substrates provide a means to stack individual layers of cells with spatial control to create dense, scaffold-free tissues. In this study, we developed a novel method to fabricate complex 3D structures by layering multiple sheets of aligned cells onto flexible scaffolds and casting them into hollow tubular geometries using custom molds and gelatin hydrogels. To enable the fabrication of 3D tissues, we adapted our previously developed thermoresponsive nanopatterned cell-sheet technology by applying it to flexible substrates that could be folded as a form of tissue origami. We demonstrated the versatile nature of this platform by casting aligned sheets of smooth and cardiac muscle cells circumferentially around the surfaces of gelatin hydrogel tubes with hollow lumens. Additionally, we patterned skeletal muscle in the same fashion to recapitulate the 3D curvature that is observed in the muscles of the trunk. The circumferential cell patterning in each case was maintained after one week in culture and even encouraged organized skeletal myotube formation. Additionally, with the application of electrical field stimulation, skeletal myotubes began to assemble functional sarcomeres that could contract. Cardiac tubes could spontaneously contract and be paced for up to one month. Our flexible cell-sheet engineering approach provides an adaptable method to recapitulate more complex 3D geometries with tissue specific customization through the addition of different cell types, mold shapes, and hydrogels. By enabling the fabrication of scaled biomimetic models of human tissues, this approach could potentially be used to investigate tissue structure-function relationships, development, and maturation in the dish.


Assuntos
Hidrogéis , Engenharia Tecidual , Anisotropia , Gelatina , Humanos , Fibras Musculares Esqueléticas , Alicerces Teciduais
13.
Angiogenesis ; 12(1): 35-46, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19105036

RESUMO

Osteoprotegerin (OPG) a soluble tumor necrosis factor receptor family molecule protects endothelial cells from apoptosis in vitro and promotes neovascularization in vivo. In this study, we assessed the role of OPG and its ligands, receptor activator of nuclear factor-kappaB ligand (RANKL) and tumor necrosis factor-related apoptosis inducing ligand (TRAIL), in microvessel formation using the rat aortic ring model of angiogenesis. OPG was found to promote a twofold increase in angiogenic sprouting in the aortic ring model, and this effect was inhibited by pre-incubation with a fivefold molar excess of either RANKL or TRAIL. While TRAIL had no effect upon angiogenesis on its own, RANKL was found to potently inhibit basal and vascular endothelial growth factor-induced angiogenesis. OPG increased the rate of endothelial cell proliferation in sprouting microvessels; in contrast, RANKL inhibited proliferation. RANKL was found to induce endothelial apoptosis at days 6, 7, and 10 in the aortic ring model and after incubation with human umbilical vein endothelial cells (HUVECs). Signaling studies showed that OPG induced ERK1/2 and Akt phosphorylation in HUVECs while RANKL had no effect. Our results indicate that OPG is a positive regulator of microvessel formation, while RANKL is an angiogenic inhibitor due to effects on regulation of endothelial cell proliferation, apoptosis, and signaling.


Assuntos
Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Osteoprotegerina/farmacologia , Ligante RANK/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/enzimologia , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Técnicas In Vitro , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Ratos , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
15.
Adv Healthc Mater ; 8(4): e1801395, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30657652

RESUMO

Self-assembled RNA particles have been exploited widely to maximize the therapeutic potential of RNA. However, the immune response via RNA particles is not fully understood. In addition, the investigation of the immunogenicity from RNA-based particles is required owing to inherent immunostimulatory effects of RNA for clinical translation. To examine the immune stimulating potency, rationally designed microsized RNA particles, called RNA microspheres (RMSs), are generated with single or double strands via rolling circle transcription. The RMSs show an exceptional stability in the presence of serum, while they are selectively degraded under endolysosomal conditions. With precisely controlled size, both RMSs are successfully taken up by macrophages. Unlike the nature of RNA fragments, RMSs induce only basal-level expression of inflammatory cytokines as well as type I interferon from macrophages, suggesting that RMSs are immunocompatible in the therapeutic dose range. Taken together, this study could help accelerate clinical translation and broaden the applicability of the self-assembled RNA-based particles without being limited by their potential immunotoxicity, while a systematic controllability study observing the release of RNA fragments from RMSs would provide self-assembled RNA-based structures with a great potential for immunomodulation.


Assuntos
Imunomodulação/efeitos dos fármacos , Interferon Tipo I/imunologia , Macrófagos/imunologia , Microesferas , RNA , Sequências de Repetição em Tandem , Animais , Macrófagos/citologia , Camundongos , Células RAW 264.7 , RNA/química , RNA/farmacologia
16.
Arterioscler Thromb Vasc Biol ; 27(11): 2302-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17717292

RESUMO

Osteopontin (OPN) is a multifunctional molecule highly expressed in chronic inflammatory and autoimmune diseases, and it is specifically localized in and around inflammatory cells. OPN is a secreted adhesive molecule, and it is thought to aid in the recruitment of monocytes-macrophages and to regulate cytokine production in macrophages, dendritic cells, and T-cells. OPN has been classified as T-helper 1 cytokine and thus believed to exacerbate inflammation in several chronic inflammatory diseases, including atherosclerosis. Besides proinflammatory functions, physiologically OPN is a potent inhibitor of mineralization, it prevents ectopic calcium deposits and is a potent inducible inhibitor of vascular calcification. Clinically, OPN plasma levels have been found associated with various inflammatory diseases, including cardiovascular burden. It is thus imperative to dissect the OPN proinflammatory and anticalcific functions. OPN recruitment functions of inflammatory cells are thought to be mediated through its adhesive domains, especially the arginine-glycine-aspartate (RGD) sequence that interacts with several integrin heterodimers. However, the integrin receptors and intracellular pathways mediating OPN effects on immune cells are not well established. Furthermore, several studies show that OPN is cleaved by at least 2 classes of proteases: thrombin and matrix-metalloproteases (MMPs). Most importantly, at least in vitro, fragments generated by cleavage not only maintain OPN adhesive functions but also expose new active domains that may impart new activities. The role for OPN proteolytic fragments in vivo is almost completely unexplored. We believe that further knowledge of the effects of OPN fragments on cell responses might help in designing therapeutics targeting inflammatory and cardiovascular diseases.


Assuntos
Aterosclerose/fisiopatologia , Inflamação/fisiopatologia , Osteopontina/fisiologia , Animais , Aterosclerose/imunologia , Calcinose/fisiopatologia , Humanos , Inflamação/imunologia , Camundongos , Osteopontina/química , Transdução de Sinais/fisiologia
18.
Cardiovasc Pathol ; 34: 28-37, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29539583

RESUMO

OBJECTIVE: Calcific aortic valve disease (CAVD) is a major cause of aortic stenosis (AS) and cardiac insufficiency. Patients with type II diabetes mellitus (T2DM) are at heightened risk for CAVD, and their valves have greater calcification than nondiabetic valves. No drugs to prevent or treat CAVD exist, and animal models that might help identify therapeutic targets are sorely lacking. To develop an animal model mimicking the structural and functional features of CAVD in people with T2DM, we tested a diabetogenic, procalcific diet and its effect on the incidence and severity of CAVD and AS in the, LDLr-/-ApoB100/100 mouse model. RESULTS: LDLr-/-ApoB100/100 mice fed a customized diabetogenic, procalcific diet (DB diet) developed hyperglycemia, hyperlipidemia, increased atherosclerosis, and obesity when compared with normal chow fed LDLr-/-ApoB100/100 mice, indicating the development of T2DM and metabolic syndrome. Transthoracic echocardiography revealed that LDLr-/-ApoB100/100 mice fed the DB diet had 77% incidence of hemodynamically significant AS, and developed thickened aortic valve leaflets and calcification in both valve leaflets and hinge regions. In comparison, normal chow (NC) fed LDLr-/-ApoB100/100 mice had 38% incidence of AS, thinner valve leaflets and very little valve and hinge calcification. Further, the DB diet fed mice with AS showed significantly impaired cardiac function as determined by reduced ejection fraction and fractional shortening. In vitro mineralization experiments demonstrated that elevated glucose in culture medium enhanced valve interstitial cell (VIC) matrix calcium deposition. CONCLUSIONS: By manipulating the diet we developed a new model of CAVD in T2DM, hyperlipidemic LDLr-/-ApoB100/100 that shows several important functional, and structural features similar to CAVD found in people with T2DM and atherosclerosis including AS, cardiac dysfunction, and inflamed and calcified thickened valve cusps. Importantly, the high AS incidence of this diabetic model may be useful for mechanistic and translational studies aimed at development of novel treatments for CAVD.


Assuntos
Estenose da Valva Aórtica/patologia , Valva Aórtica/patologia , Apolipoproteínas B/deficiência , Calcinose/patologia , Dieta , Receptores de LDL/deficiência , Animais , Valva Aórtica/metabolismo , Valva Aórtica/fisiopatologia , Estenose da Valva Aórtica/sangue , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/fisiopatologia , Apolipoproteína B-100 , Apolipoproteínas B/genética , Glicemia/metabolismo , Calcinose/sangue , Calcinose/genética , Calcinose/fisiopatologia , Células Cultivadas , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Predisposição Genética para Doença , Hemodinâmica , Hiperlipidemias/sangue , Hiperlipidemias/genética , Hiperlipidemias/patologia , Lipídeos/sangue , Masculino , Camundongos Knockout , Papio , Fenótipo , Receptores de LDL/genética , Volume Sistólico , Fatores de Tempo , Função Ventricular Esquerda
19.
Cardiovasc Res ; 114(4): 590-600, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29514202

RESUMO

Vascular calcification is associated with a significant increase in all-cause mortality and atherosclerotic plaque rupture. Calcification has been determined to be an active process driven in part by vascular smooth muscle cell (VSMC) transdifferentiation within the vascular wall. Historically, VSMC phenotype switching has been viewed as binary, with the cells able to adopt a physiological contractile phenotype or an alternate 'synthetic' phenotype in response to injury. More recent work, including lineage tracing has however revealed that VSMCs are able to adopt a number of phenotypes, including calcific (osteogenic, chondrocytic, and osteoclastic), adipogenic, and macrophagic phenotypes. Whilst the mechanisms that drive VSMC differentiation are still being elucidated it is becoming clear that medial calcification may differ in several ways from the intimal calcification seen in atherosclerotic lesions, including risk factors and specific drivers for VSMC phenotype changes and calcification. This article aims to compare and contrast the role of VSMCs in driving calcification in both atherosclerosis and in the vessel media focusing on the major drivers of calcification, including aging, uraemia, mechanical stress, oxidative stress, and inflammation. The review also discusses novel findings that have also brought attention to specific pro- and anti-calcifying proteins, extracellular vesicles, mitochondrial dysfunction, and a uraemic milieu as major determinants of vascular calcification.


Assuntos
Aterosclerose/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Placa Aterosclerótica , Calcificação Vascular/patologia , Animais , Artérias/metabolismo , Artérias/patologia , Artérias/fisiopatologia , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Fenótipo , Transdução de Sinais , Calcificação Vascular/metabolismo , Calcificação Vascular/fisiopatologia , Rigidez Vascular
20.
Nat Med ; 24(5): 667-678, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29662200

RESUMO

Sphingosine-1-phosphate (S1P) signaling influences bone metabolism, but its therapeutic potential in bone disorders has remained unexplored. We show that raising S1P levels in adult mice through conditionally deleting or pharmacologically inhibiting S1P lyase, the sole enzyme responsible for irreversibly degrading S1P, markedly increased bone formation, mass and strength and substantially decreased white adipose tissue. S1P signaling through S1P2 potently stimulated osteoblastogenesis at the expense of adipogenesis by inversely regulating osterix and PPAR-γ, and it simultaneously inhibited osteoclastogenesis by inducing osteoprotegerin through newly discovered p38-GSK3ß-ß-catenin and WNT5A-LRP5 pathways. Accordingly, S1P2-deficient mice were osteopenic and obese. In ovariectomy-induced osteopenia, S1P lyase inhibition was as effective as intermittent parathyroid hormone (iPTH) treatment in increasing bone mass and was superior to iPTH in enhancing bone strength. Furthermore, lyase inhibition in mice successfully corrected severe genetic osteoporosis caused by osteoprotegerin deficiency. Human data from 4,091 participants of the SHIP-Trend population-based study revealed a positive association between serum levels of S1P and bone formation markers, but not resorption markers. Furthermore, serum S1P levels were positively associated with serum calcium , negatively with PTH , and curvilinearly with body mass index. Bone stiffness, as determined through quantitative ultrasound, was inversely related to levels of both S1P and the bone formation marker PINP, suggesting that S1P stimulates osteoanabolic activity to counteract decreasing bone quality. S1P-based drugs should be considered as a promising therapeutic avenue for the treatment of osteoporotic diseases.


Assuntos
Aldeído Liases/antagonistas & inibidores , Anabolizantes/uso terapêutico , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/enzimologia , Terapia de Alvo Molecular , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Aldeído Liases/metabolismo , Anabolizantes/farmacologia , Animais , Reabsorção Óssea/sangue , Reabsorção Óssea/diagnóstico por imagem , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Fêmur/diagnóstico por imagem , Fêmur/patologia , Deleção de Genes , Lisofosfolipídeos/sangue , Camundongos Knockout , Obesidade/sangue , Obesidade/patologia , Tamanho do Órgão , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteoporose/metabolismo , Osteoporose/patologia , Osteoprotegerina/sangue , Osteoprotegerina/metabolismo , PPAR gama/metabolismo , Transdução de Sinais , Fator de Transcrição Sp7/metabolismo , Esfingosina/análogos & derivados , Esfingosina/sangue , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA