Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(7): 3634-3650, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33693930

RESUMO

The functionality of DNA, RNA and proteins is altered dynamically in response to physiological and pathological cues, partly achieved by their modification. While the modification of proteins with ADP-ribose has been well studied, nucleic acids were only recently identified as substrates for ADP-ribosylation by mammalian enzymes. RNA and DNA can be ADP-ribosylated by specific ADP-ribosyltransferases such as PARP1-3, PARP10 and tRNA 2'-phosphotransferase (TRPT1). Evidence suggests that these enzymes display different preferences towards different oligonucleotides. These reactions are reversed by ADP-ribosylhydrolases of the macrodomain and ARH families, such as MACROD1, TARG1, PARG, ARH1 and ARH3. Most findings derive from in vitro experiments using recombinant components, leaving the relevance of this modification in cells unclear. In this Survey and Summary, we provide an overview of the enzymes that ADP-ribosylate nucleic acids, the reversing hydrolases, and the substrates' requirements. Drawing on data available for other organisms, such as pierisin1 from cabbage butterflies and the bacterial toxin-antitoxin system DarT-DarG, we discuss possible functions for nucleic acid ADP-ribosylation in mammals. Hypothesized roles for nucleic acid ADP-ribosylation include functions in DNA damage repair, in antiviral immunity or as non-conventional RNA cap. Lastly, we assess various methods potentially suitable for future studies of nucleic acid ADP-ribosylation.


Assuntos
ADP Ribose Transferases/metabolismo , ADP-Ribosilação , DNA/química , RNA/química , Animais , Bactérias/genética , Humanos
2.
FASEB J ; 35(2): e21268, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33470457

RESUMO

Several cytoskeleton-associated proteins and signaling pathways work in concert to regulate actin cytoskeleton remodeling, cell adhesion, and migration. Although the leukocyte-specific protein 1 (LSP1) has been shown to interact with the actin cytoskeleton, its function in the regulation of actin cytoskeleton dynamics is, as yet, not fully understood. We have recently demonstrated that the bimolecular complex between LSP1 and myosin1e controls actin cytoskeleton remodeling during phagocytosis. In this study, we show that LSP1 downregulation severely impairs cell migration, lamellipodia formation, and focal adhesion dynamics in macrophages. Inhibition of the interaction between LSP1 and myosin1e also impairs these processes resulting in poorly motile cells, which are characterized by few and small lamellipodia. Furthermore, cells in which LSP1-myosin1e interaction is inhibited are typically associated with inefficient focal adhesion turnover. Collectively, our findings show that the LSP1-myosin1e bimolecular complex plays a pivotal role in the regulation of actin cytoskeleton remodeling and focal adhesion dynamics required for cell migration.


Assuntos
Adesão Celular , Movimento Celular , Macrófagos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Miosina Tipo I/metabolismo , Animais , Linhagem Celular , Matriz Extracelular/metabolismo , Macrófagos/fisiologia , Camundongos , Ligação Proteica , Pseudópodes/metabolismo
3.
MMW Fortschr Med ; 165(15): 18, 2023 09.
Artigo em Alemão | MEDLINE | ID: mdl-37653297
4.
MMW Fortschr Med ; 164(20): 74, 2022 11.
Artigo em Alemão | MEDLINE | ID: mdl-36376695
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA