Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(2): e2316498121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170754

RESUMO

Glasses are commonly described as disordered counterparts of the corresponding crystals; both usually share the same short-range order, but glasses lack long-range order. Here, a quantification of chemical bonding in a series of glasses and their corresponding crystals is performed, employing two quantum-chemical bonding descriptors, the number of electrons transferred and shared between adjacent atoms. For popular glasses like SiO2, GeSe2, and GeSe, the quantum-chemical bonding descriptors of the glass and the corresponding crystal hardly differ. This explains why these glasses possess a similar short-range order as their crystals. Unconventional glasses, which differ significantly in their short-range order and optical properties from the corresponding crystals are only found in a distinct region of the map spanned by the two bonding descriptors. This region contains crystals of GeTe, Sb2Te3, and GeSb2Te4, which employ metavalent bonding. Hence, unconventional glasses are only obtained for solids, whose crystals employ theses peculiar bonds.

2.
Small ; 18(21): e2201753, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35491494

RESUMO

Chalcogenides such as GeTe, PbTe, Sb2 Te3 , and Bi2 Se3 are characterized by an unconventional combination of properties enabling a plethora of applications ranging from thermo-electrics to phase change materials, topological insulators, and photonic switches. Chalcogenides possess pronounced optical absorption, relatively low effective masses, reasonably high electron mobilities, soft bonds, large bond polarizabilities, and low thermal conductivities. These remarkable characteristics are linked to an unconventional bonding mechanism characterized by a competition between electron delocalization and electron localization. Confinement, that is, the reduction of the sample dimension as realized in thin films should alter this competition and modify chemical bonds and the resulting properties. Here, pronounced changes of optical and vibrational properties are demonstrated for crystalline films of GeTe, while amorphous films of GeTe show no similar thickness dependence. For crystalline films, this thickness dependence persists up to remarkably large thicknesses above 15 nm. X-ray diffraction and accompanying simulations employing density functional theory relate these changes to thickness dependent structural (Peierls) distortions, due to an increased electron localization between adjacent atoms upon reducing the film thickness. A thickness dependence and hence potential to modify film properties for all chalcogenide films with a similar bonding mechanism is expected.

4.
Adv Sci (Weinh) ; 11(6): e2308578, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38059800

RESUMO

A family of solids including crystalline phase change materials such as GeTe and Sb2 Te3 , topological insulators like Bi2 Se3, and halide perovskites such as CsPbI3 possesses an unconventional property portfolio that seems incompatible with ionic, metallic, or covalent bonding. Instead, evidence is found for a bonding mechanism characterized by half-filled p-bands and a competition between electron localization and delocalization. Different bonding concepts have recently been suggested based on quantum chemical bonding descriptors which either define the bonds in these solids as electron-deficient (metavalent) or electron-rich (hypervalent). This disagreement raises concerns about the accuracy of quantum-chemical bonding descriptors is showed. Here independent of the approach chosen, electron-deficient bonds govern the materials mentioned above is showed. A detailed analysis of bonding in electron-rich XeF2 and electron-deficient GeTe shows that in both cases p-electrons govern bonding, while s-electrons only play a minor role. Yet, the properties of the electron-deficient crystals are very different from molecular crystals of electron-rich XeF2 or electron-deficient B2 H6 . The unique properties of phase change materials and related solids can be attributed to an extended system of half-filled bonds, providing further arguments as to why a distinct nomenclature such as metavalent bonding is adequate and appropriate for these solids.

5.
Adv Mater ; 35(20): e2208485, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36456187

RESUMO

Quantum chemical bonding descriptors have recently been utilized to design materials with tailored properties. Their usage to facilitate a quantitative description of bonding in chalcogenides as well as the transition between different bonding mechanisms is reviewed. More importantly, these descriptors can also be employed as property predictors for several important material characteristics, including optical and transport properties. Hence, these quantum chemical bonding descriptors can be utilized to tailor material properties of chalcogenides relevant for thermoelectrics, photovoltaics, and phase-change memories. Relating material properties to bonding mechanisms also shows that there is a class of materials, which are characterized by unconventional properties such as a pronounced anharmonicity, a large chemical bond polarizability, and strong optical absorption. This unusual property portfolio is attributed to a novel bonding mechanism, fundamentally different from ionic, metallic, and covalent bonding, which is called "metavalent." In the concluding section, a number of promising research directions are sketched, which explore the nature of the property changes upon changing bonding mechanism and extend the concept of quantum chemical property predictors to more complex compounds.

6.
Adv Sci (Weinh) ; 10(15): e2300901, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36995041

RESUMO

Metavalent bonding (MVB) is characterized by the competition between electron delocalization as in metallic bonding and electron localization as in covalent or ionic bonding, serving as an essential ingredient in phase-change materials for advanced memory applications. The crystalline phase-change materials exhibits MVB, which stems from the highly aligned p orbitals and results in large dielectric constants. Breaking the alignment of these chemical bonds leads to a drastic reduction in dielectric constants. In this work, it is clarified how MVB develops across the so-called van der Waals-like gaps in layered Sb2 Te3 and Ge-Sb-Te alloys, where coupling of p orbitals is significantly reduced. A type of extended defect involving such gaps in thin films of trigonal Sb2 Te3 is identified by atomic imaging experiments and ab initio simulations. It is shown that this defect has an impact on the structural and optical properties, which is consistent with the presence of non-negligible electron sharing in the gaps. Furthermore, the degree of MVB across the gaps is tailored by applying uniaxial strain, which results in a large variation of dielectric function and reflectivity in the trigonal phase. At last, design strategies are provided for applications utilizing the trigonal phase.

7.
Adv Mater ; 35(19): e2300893, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36920476

RESUMO

Doping is usually the first step to tailor thermoelectrics. It enables precise control of the charge-carrier concentration and concomitant transport properties. Doping should also turn GeSe, which features an intrinsically a low carrier concentration, into a competitive thermoelectric. Yet, elemental doping fails to improve the carrier concentration. In contrast, alloying with Ag-V-VI2 compounds causes a remarkable enhancement of thermoelectric performance. This advance is closely related to a transition in the bonding mechanism, as evidenced by sudden changes in the optical dielectric constant ε∞ , the Born effective charge, the maximum of the optical absorption ε2 (ω), and the bond-breaking behavior. These property changes are indicative of the formation of metavalent bonding (MVB), leading to an octahedral-like atomic arrangement. MVB is accompanied by a thermoelectric-favorable band structure featuring anisotropic bands with small effective masses and a large degeneracy. A quantum-mechanical map, which distinguishes different types of chemical bonding, reveals that orthorhombic GeSe employs covalent bonding, while rhombohedral and cubic GeSe utilize MVB. The transition from covalent to MVB goes along with a pronounced improvement in thermoelectric performance. The failure or success of different dopants can be explained by this concept, which redefines doping rules and provides a "treasure map" to tailor p-bonded chalcogenides.

8.
Sci Adv ; 8(47): eade0828, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36427303

RESUMO

To design advanced functional materials, different concepts are currently pursued, including machine learning and high-throughput calculations. Here, a different approach is presented, which uses the innate structure of the multidimensional property space. Clustering algorithms confirm the intricate structure of property space and relate the different property classes to different chemical bonding mechanisms. For the inorganic compounds studied here, four different property classes are identified and related to ionic, metallic, covalent, and recently identified metavalent bonding. These different bonding mechanisms can be quantified by two quantum chemical bonding descriptors, the number of electrons transferred and the number of electrons shared between adjacent atoms. Hence, we can link these bonding descriptors to the corresponding property portfolio, turning bonding descriptors into property predictors. The close relationship between material properties and quantum chemical bonding descriptors can be used for an inverse material design, identifying particularly promising materials based on a set of target functionalities.

9.
Nat Commun ; 12(1): 924, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568636

RESUMO

The high dielectric optical contrast between the amorphous and crystalline structural phases of non-volatile phase-change materials (PCMs) provides a promising route towards tuneable nanophotonic devices. Here, we employ the next-generation PCM In3SbTe2 (IST) whose optical properties change from dielectric to metallic upon crystallization in the whole infrared spectral range. This distinguishes IST as a switchable infrared plasmonic PCM and enables a programmable nanophotonics material platform. We show how resonant metallic nanostructures can be directly written, modified and erased on and below the meta-atom level in an IST thin film by a pulsed switching laser, facilitating direct laser writing lithography without need for cumbersome multi-step nanofabrication. With this technology, we demonstrate large resonance shifts of nanoantennas of more than 4 µm, a tuneable mid-infrared absorber with nearly 90% absorptance as well as screening and nanoscale "soldering" of metallic nanoantennas. Our concepts can empower improved designs of programmable nanophotonic devices for telecommunications, (bio)sensing and infrared optics, e.g. programmable infrared detectors, emitters and reconfigurable holograms.

10.
Adv Mater ; 33(39): e2102356, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34355435

RESUMO

The chemical bond is one of the most powerful, yet much debated concepts in chemistry, explaining property trends in solids. Recently, a novel type of chemical bonding was identified in several higher chalcogenides, characterized by a unique property portfolio, unconventional bond breaking, and sharing of about one electron between adjacent atoms. This metavalent bond is a fundamental type of bonding in solids, besides covalent, ionic, and metallic bonding, raising the pertinent question as to whether there is a well-defined transition between metavalent and covalent bonds. Here, three different pseudo-binary lines, namely, GeTe1- x Sex , Sb2 Te3(1- x ) Se3 x , and Bi2-2 x Sb2 x Se3 , are studied, and a sudden change in several properties, including optical absorption ε2 (ω), optical dielectric constant ε∞ , Born effective charge Z*, electrical conductivity, as well as bond breaking behavior for a critical Se or Sb concentration, is evidenced. These findings provide a blueprint to experimentally explore the influence of metavalent bonding on attractive properties of phase-change materials and thermoelectrics. Particularly important is its impact on optical properties, which can be tailored by the amount of electrons shared between adjacent atoms. This correlation can be used to design optoelectronic materials and to explore systematic changes in chemical bonding with stoichiometry and atomic arrangement.

11.
Adv Mater ; 32(49): e2005533, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33135228

RESUMO

Understanding the nature of chemical bonding in solids is crucial to comprehend the physical and chemical properties of a given compound. To explore changes in chemical bonding in lead chalcogenides (PbX, where X = Te, Se, S, O), a combination of property-, bond-breaking-, and quantum-mechanical bonding descriptors are applied. The outcome of the explorations reveals an electron-transfer-driven transition from metavalent bonding in PbX (X = Te, Se, S) to iono-covalent bonding in ß-PbO. Metavalent bonding is characterized by adjacent atoms being held together by sharing about a single electron (ES ≈ 1) and small electron transfer (ET). The transition from metavalent to iono-covalent bonding manifests itself in clear changes in these quantum-mechanical descriptors (ES and ET), as well as in property-based descriptors (i.e., Born effective charge (Z*), dielectric function ε(ω), effective coordination number (ECoN), and mode-specific Grüneisen parameter (γTO )), and in bond-breaking descriptors. Metavalent bonding collapses if significant charge localization occurs at the ion cores (ET) and/or in the interatomic region (ES). Predominantly changing the degree of electron transfer opens possibilities to tailor material properties such as the chemical bond (Z*) and electronic (ε∞ ) polarizability, optical bandgap, and optical interband transitions characterized by ε2 (ω). Hence, the insights gained from this study highlight the technological relevance of the concept of metavalent bonding and its potential for materials design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA