RESUMO
Transplantation of cultured epidermal cell sheets (CES) can be life-saving for patients with large area burns. CES have also been successfully used to regenerate eye and urethral epithelia in animal models. Short-term storage aims to extend the transplantation window, offers flexibility in timing surgery and allows testing of CES quality, phenotype and sterility. This study investigated extended CES storage and explored the effect of additional re-incubation recovery time following storage. The proliferative quality of stored confluent versus pre-confluent CES was also investigated using functional testing. CES were stored at 12°C and results compared to non-stored control CES. Investigation of timepoints during 15 days storage revealed that viability began to deteriorate by day 11 and was associated with increased lactate in the storage medium. The percentage of apoptotic cells also significantly increased by day 11. Flow cytometry analysis of integrin ß1 expression and cell size indicated best retention of stem cells at 7 days of storage. Functional testing of pre-confluent and confluent cells following 7 days storage showed that pre-confluent cells responded well to 1-day re-incubation after storage; they became highly prolific, increasing in number by ~67%. Conversely, proliferation in stored confluent cells declined by ~50% with 1-day re-incubation. Pre-confluent stored CES also had far superior stem cell colony forming efficiency (CFE) performance compared to the confluent group. Re-incubation improved CFE in both groups, but the pre-confluent group again out-performed the confluent group with significantly more colonies. In conclusion, a maximum storage period of 7 days is recommended. Use of pre-confluent cells and one day recovery incubation greatly improves viability, colony-forming ability and proliferation of cells stored for 7 days at 12°C. Thus, these recommendations should be considered under culture and storage of high-quality CES for clinical use.
Assuntos
Criopreservação , Epiderme , Células-Tronco/citologia , Ciclo Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Temperatura Baixa , Feminino , Humanos , Fatores de Tempo , Adulto JovemRESUMO
Paracrine and endocrine roles have increasingly been ascribed to extracellular vesicles (EVs) generated by multicellular organisms. Central to the biogenesis, content, and function of EVs are their delimiting lipid bilayer membranes. To evaluate research progress on membranes and EVs, the International Society for Extracellular Vesicles (ISEV) conducted a workshop in March 2018 in Baltimore, Maryland, USA, bringing together key opinion leaders and hands-on researchers who were selected on the basis of submitted applications. The workshop was accompanied by two scientific surveys and covered four broad topics: EV biogenesis and release; EV uptake and fusion; technologies and strategies used to study EV membranes; and EV transfer and functional assays. In this ISEV position paper, we synthesize the results of the workshop and the related surveys to outline important outstanding questions about EV membranes and describe areas of consensus. The workshop discussions and survey responses reveal that while much progress has been made in the field, there are still several concepts that divide opinion. Good consensus exists in some areas, including particular aspects of EV biogenesis, uptake and downstream signalling. Areas with little to no consensus include EV storage and stability, as well as whether and how EVs fuse with target cells. Further research is needed in these key areas, as a better understanding of membrane biology will contribute substantially towards advancing the field of extracellular vesicles.