Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
NMR Biomed ; 34(1): e4401, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32851735

RESUMO

Quantitative mapping of gadoxetate uptake and excretion rates in liver cells has shown potential to significantly improve the management of chronic liver disease and liver cancer. Unfortunately, technical and clinical validation of the technique is currently hampered by the lack of data on gadoxetate relaxivity. The aim of this study was to fill this gap by measuring gadoxetate relaxivity in liver tissue, which approximates hepatocytes, in blood, urine and bile at magnetic field strengths of 1.41, 1.5, 3, 4.7 and 7 T. Measurements were performed ex vivo in 44 female Mrp2 knockout rats and 30 female wild-type rats who had received an intravenous bolus of either 10, 25 or 40 µmol/kg gadoxetate. T1 was measured at 37 ± 3°C on NMR instruments (1.41 and 3 T), small-animal MRI (4.7 and 7 T) and clinical MRI (1.5 and 3 T). Gadolinium concentration was measured with optical emission spectrometry or mass spectrometry. The impact on measurements of gadoxetate rate constants was determined by generalizing pharmacokinetic models to tissues with different relaxivities. Relaxivity values (L mmol-1 s-1 ) showed the expected dependency on tissue/biofluid type and field strength, ranging from 15.0 ± 0.9 (1.41) to 6.0 ± 0.3 (7) T in liver tissue, from 7.5 ± 0.2 (1.41) to 6.2 ± 0.3 (7) T in blood, from 5.6 ± 0.1 (1.41) to 4.5 ± 0.1 (7) T in urine and from 5.6 ± 0.4 (1.41) to 4.3 ± 0.6 (7) T in bile. Failing to correct for the relaxivity difference between liver tissue and blood overestimates intracellular uptake rates by a factor of 2.0 at 1.41 T, 1.8 at 1.5 T, 1.5 at 3 T and 1.2 at 4.7 T. The relaxivity values derived in this study can be used retrospectively and prospectively to remove a well-known bias in gadoxetate rate constants. This will promote the clinical translation of MR-based liver function assessment by enabling direct validation against reference methods and a more effective translation between in vitro findings, animal models and patient studies.


Assuntos
Gadolínio DTPA/sangue , Fígado/diagnóstico por imagem , Campos Magnéticos , Imageamento por Ressonância Magnética , Animais , Bile/metabolismo , Transporte Biológico , Feminino , Gadolínio/sangue , Cinética , Ratos Sprague-Dawley
2.
Mol Pharm ; 18(8): 2997-3009, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34283621

RESUMO

Physiologically based pharmacokinetic (PBPK) models are increasingly used in drug development to simulate changes in both systemic and tissue exposures that arise as a result of changes in enzyme and/or transporter activity. Verification of these model-based simulations of tissue exposure is challenging in the case of transporter-mediated drug-drug interactions (tDDI), in particular as these may lead to differential effects on substrate exposure in plasma and tissues/organs of interest. Gadoxetate, a promising magnetic resonance imaging (MRI) contrast agent, is a substrate of organic-anion-transporting polypeptide 1B1 (OATP1B1) and multidrug resistance-associated protein 2 (MRP2). In this study, we developed a gadoxetate PBPK model and explored the use of liver-imaging data to achieve and refine in vitro-in vivo extrapolation (IVIVE) of gadoxetate hepatic transporter kinetic data. In addition, PBPK modeling was used to investigate gadoxetate hepatic tDDI with rifampicin i.v. 10 mg/kg. In vivo dynamic contrast-enhanced (DCE) MRI data of gadoxetate in rat blood, spleen, and liver were used in this analysis. Gadoxetate in vitro uptake kinetic data were generated in plated rat hepatocytes. Mean (%CV) in vitro hepatocyte uptake unbound Michaelis-Menten constant (Km,u) of gadoxetate was 106 µM (17%) (n = 4 rats), and active saturable uptake accounted for 94% of total uptake into hepatocytes. PBPK-IVIVE of these data (bottom-up approach) captured reasonably systemic exposure, but underestimated the in vivo gadoxetate DCE-MRI profiles and elimination from the liver. Therefore, in vivo rat DCE-MRI liver data were subsequently used to refine gadoxetate transporter kinetic parameters in the PBPK model (top-down approach). Active uptake into the hepatocytes refined by the liver-imaging data was one order of magnitude higher than the one predicted by the IVIVE approach. Finally, the PBPK model was fitted to the gadoxetate DCE-MRI data (blood, spleen, and liver) obtained with and without coadministered rifampicin. Rifampicin was estimated to inhibit active uptake transport of gadoxetate into the liver by 96%. The current analysis highlighted the importance of gadoxetate liver data for PBPK model refinement, which was not feasible when using the blood data alone, as is common in PBPK modeling applications. The results of our study demonstrate the utility of organ-imaging data in evaluating and refining PBPK transporter IVIVE to support the subsequent model use for quantitative evaluation of hepatic tDDI.


Assuntos
Meios de Contraste/farmacocinética , Gadolínio DTPA/farmacocinética , Fígado/diagnóstico por imagem , Fígado/metabolismo , Imageamento por Ressonância Magnética/métodos , Rifampina/farmacocinética , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Biomarcadores/metabolismo , Células Cultivadas , Meios de Contraste/administração & dosagem , Meios de Contraste/metabolismo , Interações Medicamentosas , Gadolínio DTPA/administração & dosagem , Gadolínio DTPA/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Modelos Animais , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Ratos , Rifampina/administração & dosagem , Rifampina/metabolismo
3.
Magn Reson Med ; 71(5): 1826-33, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23754607

RESUMO

PURPOSE: Dynamic contrast-enhanced magnetic resonance imaging has been described as a method to assess tumor vascularity and, therefore, is discussed as a noninvasive biomarker for drug response prediction in tumor therapies. Because antiangiogenic and antiproliferative drugs are frequently combined for therapy, the aim was to investigate (1) the early response predictability and (2) the extent to which these therapy types influence dynamic contrast-enhanced magnetic resonance imaging with gadobutrol soon after therapy initiation. METHODS: Mice bearing a KPL-4 tumor were treated with either bevacizumab as an antiangiogenic drug or trastuzumab as a cytotoxic anti-tumor drug. The gadobutrol-contrast agent exposure of the tumor was recorded before and at several time points after therapy initiation to examine the response prediction by dynamic contrast-enhanced magnetic resonance imaging. RESULTS: Both therapies resulted in significant tumor growth attenuation over 30 days of therapy, but the individual response to each therapy was different. Specifically, bevacizumab affected the dynamic gadobutrol-enhanced MRI-derived area under the curve at early time points (≤8 days), while trastuzumab did not. CONCLUSION: The area under the curve obtained from dynamic gadobutrol-enhanced MRI predicted early tumor response to the antiangiogenic drug bevacizumab, but not to the anti-tumor cell drug trastuzumab. This indicates that the area under the curve may be useful for assessing early antiangiogenic but not antiproliferative drug effects.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Citostáticos/administração & dosagem , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Compostos Organometálicos , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Camundongos , Prognóstico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento
4.
Int J Cancer ; 129(1): 245-55, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21170960

RESUMO

Angiogenesis, a critical driver of tumor development, is controlled by interconnected signaling pathways. Vascular endothelial growth factor receptor (VEGFR) 2 and tyrosine kinase with immunoglobulin and epidermal growth factor homology domain 2 play crucial roles in the biology of normal and tumor vasculature. Regorafenib (BAY 73-4506), a novel oral multikinase inhibitor, potently inhibits these endothelial cell kinases in biochemical and cellular kinase phosphorylation assays. Furthermore, regorafenib inhibits additional angiogenic kinases (VEGFR1/3, platelet-derived growth factor receptor-ß and fibroblast growth factor receptor 1) and the mutant oncogenic kinases KIT, RET and B-RAF. The antiangiogenic effect of regorafenib was demonstrated in vivo by dynamic contrast-enhanced magnetic resonance imaging. Regorafenib administered once orally at 10 mg/kg significantly decreased the extravasation of Gadomer in the vasculature of rat GS9L glioblastoma tumor xenografts. In a daily (qd)×4 dosing study, the pharmacodynamic effects persisted for 48 hr after the last dosing and correlated with tumor growth inhibition (TGI). A significant reduction in tumor microvessel area was observed in a human colorectal xenograft after qd×5 dosing at 10 and 30 mg/kg. Regorafenib exhibited potent dose-dependent TGI in various preclinical human xenograft models in mice, with tumor shrinkages observed in breast MDA-MB-231 and renal 786-O carcinoma models. Pharmacodynamic analyses of the breast model revealed strong reduction in staining of proliferation marker Ki-67 and phosphorylated extracellular regulated kinases 1/2. These data demonstrate that regorafenib is a well-tolerated, orally active multikinase inhibitor with a distinct target profile that may have therapeutic benefit in human malignancies.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Feminino , Imageamento por Ressonância Magnética , Camundongos , Camundongos Nus , Fosforilação , Ratos , Ratos Endogâmicos F344
5.
Sci Rep ; 10(1): 22385, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33372182

RESUMO

Gadolinium based contrast agents (GBCAs) are widely used in clinical MRI since the mid-1980s. Recently, concerns have been raised that trace amounts of Gadolinium (Gd), detected in brains even long time after GBCA application, may cause yet unrecognized clinical consequences. We therefore assessed the behavioral phenotype, neuro-histopathology, and Gd localization after repeated administration of linear (gadodiamide) or macrocyclic (gadobutrol) GBCA in rats. While most behavioral tests revealed no difference between treatment groups, we observed a transient and reversible decrease of the startle reflex after gadodiamide application. Residual Gd in the lateral cerebellar nucleus was neither associated with a general gene expression pathway deregulation nor with neuronal cell loss, but in gadodiamide-treated rats Gd was associated with the perineuronal net protein aggrecan and segregated to high molecular weight fractions. Our behavioral finding together with Gd distribution and speciation support a substance class difference for Gd presence in the brain after GBCA application.


Assuntos
Comportamento Animal , Núcleos Cerebelares , Meios de Contraste/farmacologia , Gadolínio DTPA/farmacologia , Imageamento por Ressonância Magnética , Compostos Organometálicos/farmacologia , Reflexo de Sobressalto , Animais , Núcleos Cerebelares/diagnóstico por imagem , Núcleos Cerebelares/fisiologia , Gadolínio/farmacologia , Masculino , Ratos , Ratos Wistar
6.
Invest Radiol ; 54(2): 76-82, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30358694

RESUMO

OBJECTIVE: This study investigated the potential effect of the chelating agent calcium trisodium pentetate (Ca-DTPA) on the urinary excretion of gadolinium and the subsequent elimination of gadolinium (Gd) in the brain after a single intravenous administration of either a linear (gadodiamide) or a macrocyclic (gadobutrol) Gd-based contrast agent in rats. MATERIALS AND METHODS: Rats received either a single injection of gadodiamide or gadobutrol (1.8 mmol/kg, each) or saline (n = 18 per group). Seven weeks after the injection, 6 animals of each group were killed before the treatment period. From the remaining 12 animals, 6 received either 3 intravenous injections of Ca-DTPA (180 µmol/kg) or saline. Urine was collected daily for 3 days after each infusion. Gadolinium measurements by ICP-MS were performed in urine and tissue samples. RESULTS: In animals that initially received the linear gadodiamide, Ca-DTPA infusion increased the urinary excretion of Gd by a factor of 10 (cumulative amount of 114 ± 21 nmol Gd vs 10 ± 4 nmol Gd after saline infusion, P ≤ 0.0001). In contrast, animals that received the macrocyclic gadobutrol exhibited a higher spontaneous urinary excretion of Gd (33 ± 12 nmol after saline infusion) and Ca-DTPA had no impact (30 ± 11 nmol Gd, P = 0.68).The urinary excretion of Gd was associated with Gd brain content. Seven weeks after the initial Gd-based contrast agent administration, a total amount of 0.74 ± 0.053 nmol Gd was quantified in the brain after administration of gadodiamide. The Gd brain burden was partially reduced at the end of the treatment period in the animals that were repeatedly infused with Ca-DTPA (0.56 ± 0.13 nmol Gd, P = 0.009) but not with saline (0.66 ± 0.081 nmol, P = 0.32). In contrast, the total amount of macrocyclic gadobutrol measured in the brain was lower (0.11 ± 0.029 nmol Gd) and still spontaneously cleared during the 3-week saline infusion period (0.057 ± 0.019 nmol Gd (P = 0.003). Gadolinium quantified in the brain after infusions with Ca-DTPA did not differ from saline-infused animals (0.049 ± 0.014 nmol Gd). CONCLUSIONS: Administration of the chelating agent Ca-DTPA 7 weeks after injection of linear gadodiamide induced relevant urinary Gd excretion. In parallel, the Gd amount in the brain tissue decreased. This indicates a dechelated pool among the chemical Gd forms present in the rat brain after linear gadodiamide administration that can be mobilized by chelation with Ca-DTPA. In contrast, Ca-DTPA did not mobilize Gd in animals that received macrocyclic gadobutrol, indicating that the Gd measured is intact gadobutrol.


Assuntos
Quelantes/farmacologia , Meios de Contraste/farmacocinética , Gadolínio DTPA/farmacocinética , Gadolínio/metabolismo , Compostos Organometálicos/farmacocinética , Ácido Pentético/farmacologia , Animais , Encéfalo/metabolismo , Meios de Contraste/administração & dosagem , Gadolínio/urina , Gadolínio DTPA/administração & dosagem , Masculino , Compostos Organometálicos/administração & dosagem , Ratos , Ratos Wistar
7.
Magn Reson Imaging ; 59: 121-129, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30872166

RESUMO

BACKGROUND: Many translational MR biomarkers derive from measurements of the water proton longitudinal relaxation rate R1, but evidence for between-site reproducibility of R1 in small-animal MRI is lacking. OBJECTIVE: To assess R1 repeatability and multi-site reproducibility in phantoms for preclinical MRI. METHODS: R1 was measured by saturation recovery in 2% agarose phantoms with five nickel chloride concentrations in 12 magnets at 5 field strengths in 11 centres on two different occasions within 1-13 days. R1 was analysed in three different regions of interest, giving 360 measurements in total. Root-mean-square repeatability and reproducibility coefficients of variation (CoV) were calculated. Propagation of reproducibility errors into 21 translational MR measurements and biomarkers was estimated. Relaxivities were calculated. Dynamic signal stability was also measured. RESULTS: CoV for day-to-day repeatability (N = 180 regions of interest) was 2.34% and for between-centre reproducibility (N = 9 centres) was 1.43%. Mostly, these do not propagate to biologically significant between-centre error, although a few R1-based MR biomarkers were found to be quite sensitive even to such small errors in R1, notably in myocardial fibrosis, in white matter, and in oxygen-enhanced MRI. The relaxivity of aqueous Ni2+ in 2% agarose varied between 0.66 s-1 mM-1 at 3 T and 0.94 s-1 mM-1 at 11.7T. INTERPRETATION: While several factors affect the reproducibility of R1-based MR biomarkers measured preclinically, between-centre propagation of errors arising from intrinsic equipment irreproducibility should in most cases be small. However, in a few specific cases exceptional efforts might be required to ensure R1-reproducibility.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Sefarose/química , Água/química , Animais , Biomarcadores , Simulação por Computador , Camundongos , Níquel/química , Oxigênio , Prótons , Ratos , Análise de Regressão , Reprodutibilidade dos Testes
8.
Nanomaterials (Basel) ; 8(4)2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29561782

RESUMO

The optimization of iron oxide nanoparticles as tracers for magnetic particle imaging (MPI) alongside the development of data acquisition equipment and image reconstruction techniques is crucial for the required improvements in image resolution and sensitivity of MPI scanners. We present a large-scale water-based synthesis of multicore superparamagnetic iron oxide nanoparticles stabilized with dextran (MC-SPIONs). We also demonstrate the preparation of single core superparamagnetic iron oxide nanoparticles in organic media, subsequently coated with a poly(ethylene glycol) gallic acid polymer and phase transferred to water (SC-SPIONs). Our aim was to obtain long-term stable particles in aqueous media with high MPI performance. We found that the amplitude of the third harmonic measured by magnetic particle spectroscopy (MPS) at 10 mT is 2.3- and 5.8-fold higher than Resovist for the MC-SPIONs and SC-SPIONs, respectively, revealing excellent MPI potential as compared to other reported MPI tracer particle preparations. We show that the reconstructed MPI images of phantoms using optimized multicore and specifically single-core particles are superior to that of commercially available Resovist, which we utilize as a reference standard, as predicted by MPS.

9.
Adv Healthc Mater ; 5(5): 567-74, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26696569

RESUMO

The enhanced relaxation of hydrogen atoms of surrounding water from suitable contrast agent promotes magnetic resonance imaging as one of the most important medical diagnosis technique. The key challenge for the preparation of performant contrast agents for magnetic resonance imaging with high relaxivity is to ensure a high local concentration of contrast agent while allowing a contact between water and the contrast agent. Both requirements are answered by tailoring a semipermeable confinement for a gadolinium complex used as contrast agent. A locally high concentration is achieved by successfully encapsulating the complex in polymer nanocontainers that serves to protect and retain the complex inside a limited space. The access of water to the complex is achieved by carefully controlling the chemistry of the shell and the core of the nanocontainers. The confinement of the nanocontainers enables an increased relaxivity compared to an aqueous solution of the contrast agent. The nanocontainers are successfully applied in vivo to yield enhanced contrast in magnetic resonance imaging.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética , Nanocápsulas/química , Animais , Gadolínio/química , Humanos , Masculino , Camundongos , Compostos Organometálicos/química , Processamento de Sinais Assistido por Computador , Soluções , Distribuição Tecidual
10.
Artigo em Inglês | MEDLINE | ID: mdl-25266498

RESUMO

When diagnosing cancer, assessing the nodal stage is tremendously important in determining the patient's prognosis. Computed tomography (CT) and magnetic resonance (MR) imaging (MRI) assessments of the regional lymph node (LN) size and shape are currently used for the initial nodal staging in clinical settings, although this approach has a rather low sensitivity, and biopsy often leads to restaging of the LNs. Acknowledging the great medical need to accurately stage LNs, scientists and clinicians have been working since the late 1980s on MR contrast agents that provide more reliable staging results. Different types of molecules (i.e., iron oxide nanoparticles and Gd-based contrast agent) have shown promising LN accumulation and imaging results, but no clinically approved, dedicated LN staging contrast agent is currently available. The literature describes a mechanism of contrast agent accumulation in the LNs that considers some but not all published experimental evidence. However, confidence in the mechanism of LN accumulation is a prerequisite for the directed synthesis of compounds for accurate and sensitive LN staging. To improve our understanding of the LN contrast agent accumulation mechanism, we reviewed the published data on the enrichment of colloidal MR contrast agent candidates in LNs, and we suggest an extended mechanism for contrast agent enrichment in LNs. For further clarification, physiology and results from drug targeting studies are considered where applicable.


Assuntos
Meios de Contraste , Linfonodos/patologia , Imageamento por Ressonância Magnética , Animais , Coloides , Meios de Contraste/efeitos adversos , Extravasamento de Materiais Terapêuticos e Diagnósticos/etiologia , Humanos
11.
J Cereb Blood Flow Metab ; 33(5): e1-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23443176

RESUMO

Intravenous administration of iron oxide nanoparticles during the acute stage of experimental stroke can produce signal intensity changes in the ischemic region. This has been attributed, albeit controversially, to the infiltration of iron-laden blood-borne macrophages. The properties of nanoparticles that render them most suitable for phagocytosis is a matter of debate, as is the most relevant timepoint for administration. Both of these questions are examined in the present study. Imaging experiments were performed in mice with 30 minutes of middle cerebral artery occlusion (MCAO). Iron oxide nanoparticles with different charges and sizes were used, and mice received 300 µmol Fe/kg intravenously: either superparamagnetic iron oxide nanoparticles (SPIOs), ultrasmall SPIOs, or very small SPIOs. The particles were administered 7 days before MCAO, at the time of reperfusion, or 72 hours after MCAO. Interestingly, there was no observable signal change in the ischemic brains that could be attributed to iron. Furthermore, no Prussian blue-positive cells were found in the brains or blood leukocytes, despite intense staining in the livers and spleens. This implies that the nanoparticles selected for this study are not phagocytosed by blood-borne leukocytes and do not enter the ischemic mouse brain.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/patologia , Meios de Contraste , Infarto da Artéria Cerebral Média/patologia , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Animais , Meios de Contraste/química , Leucócitos/citologia , Leucócitos/patologia , Nanopartículas de Magnetita/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Fagocitose
12.
Int J Nanomedicine ; 7: 4447-58, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22927759

RESUMO

PURPOSE: Magnetic resonance imaging (MRI), one of the most powerful imaging techniques available, usually requires the use of an on-demand designed contrast agent to fully exploit its potential. The blood kinetics of the contrast agent represent an important factor that needs to be considered depending on the objective of the medical examination. For particulate contrast agents, such as superparamagnetic iron oxide nanoparticles (SPIOs), the key parameters are particle size and characteristics of the coating material. In this study we analyzed the effect of these two properties independently and systematically on the magnetic behavior and blood half-life of SPIOs. METHODS: Eleven different SPIOs were synthesized for this study. In the first set (a), seven carboxydextran (CDX)-coated SPIOs of different sizes (19-86 nm) were obtained by fractionating a broadly size-distributed CDX-SPIO. The second set (b) contained three SPIOs of identical size (50 nm) that were stabilized with different coating materials, polyacrylic acid (PAA), poly-ethylene glycol, and starch. Furthermore, small PAA-SPIOs (20 nm) were synthesized to gain a global insight into the effects of particle size vs coating characteristics. Saturation magnetization and proton relaxivity were determined to represent the magnetic and imaging properties. The blood half-life was analyzed in rats using MRI, time-domain nuclear magnetic resonance, and inductively coupled plasma optical emission spectrometry. RESULTS: By changing the particle size without modifying any other parameters, the relaxivity r(2) increased with increasing mean particle diameter. However, the blood half-life was shorter for larger particles. The effect of the coating material on magnetic properties was less pronounced, but it had a strong influence on blood kinetics depending on the ionic character of the coating material. CONCLUSION: In this report we systematically demonstrated that both particle size and coating material influence blood kinetics and magnetic properties of SPIO independently. These data provide key information for the selection of a contrast agent for a defined application and are additionally valuable for other nano areas, such as hyperthermia, drug delivery, and nanotoxicology.


Assuntos
Meios de Contraste/química , Meios de Contraste/farmacocinética , Ferro/sangue , Ferro/química , Nanopartículas de Magnetita/química , Óxidos/sangue , Óxidos/química , Resinas Acrílicas/química , Animais , Linhagem Celular , Meia-Vida , Ferro/farmacocinética , Imageamento por Ressonância Magnética , Masculino , Camundongos , Óxidos/farmacocinética , Tamanho da Partícula , Polietilenoglicóis/química , Ratos , Ratos Wistar , Amido/química , Relação Estrutura-Atividade , Propriedades de Superfície
13.
Invest Radiol ; 47(7): 383-91, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22659596

RESUMO

OBJECTIVE: Tumor imaging via molecular magnetic resonance imaging (MRI) that uses specific superparamagnetic iron oxide particles (SPIOs) has been addressed in the literature several times in the last 20 years. To our knowledge, none of the reported approaches is currently used for routine clinical diagnostic evaluation, nor are any in clinical development. This raises questions as to whether SPIO-enhanced molecular MRI is sensitive and specific enough for use in clinical practice. The aim of our preclinical study was to investigate the minimum requirements for obtaining sensitive molecular MRI for use in tumor evaluations under optimal conditions. The well-vascularized F9 teratocarcinoma tumor model, which exhibits high levels of the highly accessible target CD105 (endoglin), was used to compare the accumulation and visualization of target-specific SPIOs by MRI. MATERIAL AND METHODS: Superparamagnetic iron oxide particles were optimized in the following ways: (a) proton relaxivity was increased for higher imaging sensitivity, (b) a coating material was used for optimal loading density of the αCD105 antibody, and (c) binding activity to the target CD105 was increased. Binding activity and specificity were confirmed in vitro using enzyme-linked immunosorbent assay and in vivo using pharmacokinetic and biodistribution studies of 11 F9 teratoma-bearing mice together with micro-autoradiography. CD105 target expression was determined using immunohistochemistry and quantitative enzyme-linked immunosorbent assay. The transverse relaxation rate R2* was quantified by 3.0-T MRI in the tumors, kidneys, and muscles before and up to 60 minutes after injection in 11 mice. The use of [Fe]-labeled SPIOs for all in vivo experiments allowed for the direct correlation of the imaging results with SPIO accumulation. RESULTS: High-relaxivity αCD105-polyacrylic acid-SPIOs (r2 up to 440 L mmol Fe s) with strong binding activity accumulated specifically in tumors (1.4% injected dose/g) and kidneys (4.1% injected dose/g) in a manner dependent on the target concentration. The accumulation occurred within the first 3 minutes after injection. Visualization of specific SPIOs was accomplished with MRI. In contrast to the successful use of MRI in all examined kidneys (mean ± SEM ΔR2*, 61 ± 11 s), only 6 of 11 tumors (mean ± SEM ΔR2*, 15 ± 7 s) showed a clear signal when compared with the control even though optimal conditions were used. CONCLUSION: The accumulation of CD105-specific SPIOs in F9 mouse teratomas was robust. However, visualization of the specifically accumulated SPIOs by MRI was not reliable because of its limited signal detection sensitivity. We postulate that it will be challenging to improve the imaging properties of targeted SPIOs further. Therefore, molecular MRI by targeted SPIOs is currently not suitable for clinical tumor imaging using routinely applicable sequences and field strength.


Assuntos
Compostos Férricos , Peptídeos e Proteínas de Sinalização Intracelular , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Nanopartículas , Neoplasias/diagnóstico , Animais , Meios de Contraste , Modelos Animais de Doenças , Endoglina , Ensaio de Imunoadsorção Enzimática , Camundongos , Neoplasias/patologia , Ratos , Ratos Wistar , Sensibilidade e Especificidade , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA