Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 92(6): 2473-2490, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39133639

RESUMO

PURPOSE: This study aims to map the transmit magnetic field ( B 1 + $$ {B}_1^{+} $$ ) in the human body at 7T using MR fingerprinting (MRF), with a focus on achieving high accuracy and precision across a large dynamic range, particularly at low flip angles (FAs). METHODS: A FLASH-based MRF sequence (B1-MRF) with high B 1 + $$ {B}_1^{+} $$ sensitivity was developed. Phantom and in vivo abdominal imaging were performed at 7T, and the results were compared with established reference methods, including a slow but precise preparation-based method (PEX), saturated TurboFLASH (satTFL), actual flip angle imaging (AFI) and Bloch-Siegert shift (BSS). RESULTS: The MRF signal curve was highly sensitive to B 1 + $$ {B}_1^{+} $$ , while T1 sensitivity was comparatively low. The phantom experiment showed good agreement of B 1 + $$ {B}_1^{+} $$ to PEX for a T1 range of 204-1691 ms evaluated at FAs from 0° to 70°. Compared to the references, a dynamic range increase larger than a factor of two was determined experimentally. In vivo liver scans showed a strong correlation between B1-MRF, satTFL, and RPE-AFI in a low body mass index (BMI) subject (18.1 kg/m2). However, in larger BMI subjects (≥25.5 kg/m2), inconsistencies were observed in low B 1 + $$ {B}_1^{+} $$ regions for satTFL and RPE-AFI, while B1-MRF still provided consistent results in these regions. CONCLUSION: B1-MRF provides accurate and precise B 1 + $$ {B}_1^{+} $$ maps over a wide range of FAs, surpassing the capabilities of existing methods in the FA range < 60°. Its enhanced sensitivity at low FAs is advantageous for various applications requiring precise B 1 + $$ {B}_1^{+} $$ estimates, potentially advancing the frontiers of ultra-high field (UHF) body imaging at 7T and beyond.


Assuntos
Imageamento por Ressonância Magnética , Imagens de Fantasmas , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto , Feminino , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Reprodutibilidade dos Testes , Campos Magnéticos , Abdome/diagnóstico por imagem , Adulto Jovem
2.
Magn Reson Med ; 91(5): 1994-2009, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38174601

RESUMO

PURPOSE: Traditional phase-contrast MRI is affected by displacement artifacts caused by non-synchronized spatial- and velocity-encoding time points. The resulting inaccurate velocity maps can affect the accuracy of derived hemodynamic parameters. This study proposes and characterizes a 3D radial phase-contrast UTE (PC-UTE) sequence to reduce displacement artifacts. Furthermore, it investigates the displacement of a standard Cartesian flow sequence by utilizing a displacement-free synchronized-single-point-imaging MR sequence (SYNC-SPI) that requires clinically prohibitively long acquisition times. METHODS: 3D flow data was acquired at 3T at three different constant flow rates and varying spatial resolutions in a stenotic aorta phantom using the proposed PC-UTE, a Cartesian flow sequence, and a SYNC-SPI sequence as reference. Expected displacement artifacts were calculated from gradient timing waveforms and compared to displacement values measured in the in vitro flow experiments. RESULTS: The PC-UTE sequence reduces displacement and intravoxel dephasing, leading to decreased geometric distortions and signal cancellations in magnitude images, and more spatially accurate velocity quantification compared to the Cartesian flow acquisitions; errors increase with velocity and higher spatial resolution. CONCLUSION: PC-UTE MRI can measure velocity vector fields with greater accuracy than Cartesian acquisitions (although pulsatile fields were not studied) and shorter scan times than SYNC-SPI. As such, this approach is superior to traditional Cartesian 3D and 4D flow MRI when spatial misrepresentations cannot be tolerated, for example, when computational fluid dynamics simulations are compared to or combined with in vitro or in vivo measurements, or regional parameters such as wall shear stress are of interest.


Assuntos
Estenose da Valva Aórtica , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Hemodinâmica , Imagens de Fantasmas , Artefatos , Velocidade do Fluxo Sanguíneo , Imageamento Tridimensional/métodos
3.
MAGMA ; 37(4): 637-649, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39133420

RESUMO

OBJECTIVE: The purpose of this study was to investigate an approach for motion-corrected T1 mapping of the abdomen that allows for free breathing data acquisition with 100% scan efficiency. MATERIALS AND METHODS: Data were acquired using a continuous golden radial trajectory and multiple inversion pulses. For the correction of respiratory motion, motion estimation based on a surrogate was performed from the same data used for T1 mapping. Image-based self-navigation allowed for binning and reconstruction of respiratory-resolved images, which were used for the estimation of respiratory motion fields. Finally, motion-corrected T1 maps were calculated from the data applying the estimated motion fields. The method was evaluated in five healthy volunteers. For the assessment of the image-based navigator, we compared it to a simultaneously acquired ultrawide band radar signal. Motion-corrected T1 maps were evaluated qualitatively and quantitatively for different scan times. RESULTS: For all volunteers, the motion-corrected T1 maps showed fewer motion artifacts in the liver as well as sharper kidney structures and blood vessels compared to uncorrected T1 maps. Moreover, the relative error to the reference breathhold T1 maps could be reduced from up to 25% for the uncorrected T1 maps to below 10% for the motion-corrected maps for the average value of a region of interest, while the scan time could be reduced to 6-8 s. DISCUSSION: The proposed approach allows for respiratory motion-corrected T1 mapping in the abdomen and ensures accurate T1 maps without the need for any breathholds.


Assuntos
Abdome , Artefatos , Voluntários Saudáveis , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Movimento (Física) , Respiração , Humanos , Abdome/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Adulto , Algoritmos , Fígado/diagnóstico por imagem , Movimento/fisiologia , Masculino , Feminino , Rim/diagnóstico por imagem , Reprodutibilidade dos Testes
4.
Magn Reson Med ; 90(3): 1086-1100, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37288592

RESUMO

PURPOSE: To allow for T1 mapping of the myocardium within 2.3 s for a 2D slice utilizing cardiac motion-corrected, model-based image reconstruction. METHODS: Golden radial data acquisition is continuously carried out for 2.3 s after an inversion pulse. In a first step, dynamic images are reconstructed which show both contrast changes due to T1 recovery and anatomical changes due to the heartbeat. An image registration algorithm with a signal model for T1 recovery is applied to estimate non-rigid cardiac motion. In a second step, estimated motion fields are applied during an iterative model-based T1 reconstruction. The approach was evaluated in numerical simulations, phantom experiments and in in-vivo scans in healthy volunteers. RESULTS: The accuracy of cardiac motion estimation was shown in numerical simulations with an average motion field error of 0.7 ± 0.6 mm for a motion amplitude of 5.1 mm. The accuracy of T1 estimation was demonstrated in phantom experiments, with no significant difference (p = 0.13) in T1 estimated by the proposed approach compared to an inversion-recovery reference method. In vivo, the proposed approach yielded 1.3 × 1.3 mm T1 maps with no significant difference (p = 0.77) in T1 and SDs in comparison to a cardiac-gated approach requiring 16 s scan time (i.e., seven times longer than the proposed approach). Cardiac motion correction improved the precision of T1 maps, shown by a 40% reduced SD. CONCLUSION: We have presented an approach that provides T1 maps of the myocardium in 2.3 s by utilizing both cardiac motion correction and model-based T1 reconstruction.


Assuntos
Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Miocárdio , Movimento (Física) , Tomografia Computadorizada por Raios X , Imagens de Fantasmas , Coração/diagnóstico por imagem , Reprodutibilidade dos Testes
5.
Magn Reson Med ; 89(3): 1002-1015, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36336877

RESUMO

PURPOSE: Subject-tailored parallel transmission pulses for ultra-high fields body applications are typically calculated based on subject-specific B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps of all transmit channels, which require lengthy adjustment times. This study investigates the feasibility of using deep learning to estimate complex, channel-wise, relative 2D B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps from a single gradient echo localizer to overcome long calibration times. METHODS: 126 channel-wise, complex, relative 2D B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps of the human heart from 44 subjects were acquired at 7T using a Cartesian, cardiac gradient-echo sequence obtained under breath-hold to create a library for network training and cross-validation. The deep learning predicted maps were qualitatively compared to the ground truth. Phase-only B 1 + $$ {\mathrm{B}}_1^{+} $$ -shimming was subsequently performed on the estimated B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps for a region of interest covering the heart. The proposed network was applied at 7T to 3 unseen test subjects. RESULTS: The deep learning-based B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps, derived in approximately 0.2 seconds, match the ground truth for the magnitude and phase. The static, phase-only pulse design performs best when maximizing the mean transmission efficiency. In-vivo application of the proposed network to unseen subjects demonstrates the feasibility of this approach: the network yields predicted B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps comparable to the acquired ground truth and anatomical scans reflect the resulting B 1 + $$ {\mathrm{B}}_1^{+} $$ -pattern using the deep learning-based maps. CONCLUSION: The feasibility of estimating 2D relative B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps from initial localizer scans of the human heart at 7T using deep learning is successfully demonstrated. Because the technique requires only sub-seconds to derive channel-wise B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps, it offers high potential for advancing clinical body imaging at ultra-high fields.


Assuntos
Aprendizado Profundo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Coração/diagnóstico por imagem , Calibragem
6.
MAGMA ; 36(1): 135-150, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35921020

RESUMO

OBJECTIVE: To provide respiratory motion correction for free-breathing myocardial T1 mapping using a pilot tone (PT) and a continuous golden-angle radial acquisition. MATERIALS AND METHODS: During a 45 s prescan the PT is acquired together with a dynamic sagittal image covering multiple respiratory cycles. From these images, the respiratory heart motion in head-feet and anterior-posterior direction is estimated and two linear models are derived between the PT and heart motion. In the following scan through-plane motion is corrected prospectively with slice tracking based on the PT. In-plane motion is corrected for retrospectively. Our method was evaluated on a motion phantom and 11 healthy subjects. RESULTS: Non-motion corrected measurements using a moving phantom showed T1 errors of 14 ± 4% (p < 0.05) compared to a reference measurement. The proposed motion correction approach reduced this error to 3 ± 4% (p < 0.05). In vivo the respiratory motion led to an overestimation of T1 values by 26 ± 31% compared to breathhold T1 maps, which was successfully corrected to an average difference of 3 ± 2% (p < 0.05) between our free-breathing approach and breathhold data. DISCUSSION: Our proposed PT-based motion correction approach allows for T1 mapping during free-breathing with the same accuracy as a corresponding breathhold T1 mapping scan.


Assuntos
Imageamento por Ressonância Magnética , Miocárdio , Humanos , Estudos Retrospectivos , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Respiração
7.
MAGMA ; 36(2): 191-210, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37029886

RESUMO

Multiple sites within Germany operate human MRI systems with magnetic fields either at 7 Tesla or 9.4 Tesla. In 2013, these sites formed a network to facilitate and harmonize the research being conducted at the different sites and make this technology available to a larger community of researchers and clinicians not only within Germany, but also worldwide. The German Ultrahigh Field Imaging (GUFI) network has defined a strategic goal to establish a 14 Tesla whole-body human MRI system as a national research resource in Germany as the next progression in magnetic field strength. This paper summarizes the history of this initiative, the current status, the motivation for pursuing MR imaging and spectroscopy at such a high magnetic field strength, and the technical and funding challenges involved. It focuses on the scientific and science policy process from the perspective in Germany, and is not intended to be a comprehensive systematic review of the benefits and technical challenges of higher field strengths.


Assuntos
Imageamento por Ressonância Magnética , Imagem Corporal Total , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Imagem Corporal Total/métodos , Alemanha , Campos Magnéticos
8.
Magn Reson Med ; 88(6): 2709-2717, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35916368

RESUMO

PURPOSE: Flow quantification by phase-contrast MRI is hampered by spatially varying background phase offsets. Correction performance by polynomial regression on stationary tissue may be affected by outliers such as wrap-around or constant flow. Therefore, we propose an alternative, M-estimate SAmple Consensus (MSAC) to reject outliers, and improve and fully automate background phase correction. METHODS: The MSAC technique fits polynomials to randomly drawn small samples from the image. Over several trials, it aims to find the best consensus set of valid pixels by rejecting outliers to the fit and minimizing the residuals of the remaining pixels. The robustness of MSAC to its few parameters was investigated and verified using third-order polynomial correction fits on a total of 118 2D flow (97 with wrap-around) and 18 4D flow data sets (14 with wrap-around), acquired at 1.5 T and 3 T. Background phase was compared with standard stationary correction and phantom correction. Pulmonary/systemic flow ratios in 2D flow were derived, and exemplary 4D flow analysis was performed. RESULTS: The MSAC technique is robust over a range of parameter choices, and a unique set of parameters is suitable for both 2D and 4D flow. In 2D flow, phase errors were significantly reduced by MSAC compared with stationary correction (p = 0.005), and stationary correction shows larger errors in pulmonary/systemic flow ratios compared with MSAC. In 4D flow, MSAC shows similar performance as stationary correction. CONCLUSIONS: The MSAC method provides fully automated background phase correction to 2D and 4D flow data and shows improved robustness over stationary correction, especially with outliers present.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Velocidade do Fluxo Sanguíneo , Consenso , Voluntários Saudáveis , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes
9.
Magn Reson Med ; 87(1): 70-84, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34399002

RESUMO

PURPOSE: MRI at ultra-high fields in the human body is highly challenging and requires lengthy calibration times to compensate for spatially heterogeneous B1+ profiles. This study investigates the feasibility of using pre-computed universal pulses for calibration-free homogeneous 3D flip angle distribution in the human heart at 7T. METHODS: Twenty-two channel-wise 3D B1+ data sets were acquired under free-breathing in 19 subjects to generate a library for an offline universal pulse (UP) design (group 1: 12 males [M] and 7 females [F], 21-66 years, 19.8-28.3 kg/m2 ). Three of these subjects (2M/1F, 21-33 years, 20.8-23.6 kg/m2 ) were re-scanned on different days. A 4kT-points UP optimized for the 22 channel-wise 3D B1+ data sets in group 1 (UP22-4kT) is proposed and applied at 7T in 9 new and unseen subjects (group 2: 4M/5F, 25-56 years, 19.5-35.3 kg/m2 ). Multiple tailored and universal static and dynamic parallel-transmit (pTx) pulses were designed and evaluated for different permutations of the B1+ data sets in group 1 and 2. RESULTS: The proposed UP22-4kT provides low B1+ variation in all subjects, seen and unseen, without severe signal drops. Experimental data at 7T acquired with UP22-4kT shows comparable image quality as data acquired with tailored-4kT pulses and demonstrates successful calibration-free pTx of the human heart. CONCLUSION: UP22-4kT allows for calibration-free homogeneous flip angle distributions across the human heart at 7T. Large inter-subject variations because of sex, age, and body mass index are well tolerated. The proposed universal pulse removes the need for lengthy (10-15 min) calibration scans and therefore has the potential to bring body imaging at 7T closer to the clinical application.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Encéfalo , Calibragem , Feminino , Coração/diagnóstico por imagem , Humanos , Masculino , Respiração
10.
Magn Reson Med ; 88(4): 1561-1574, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35775790

RESUMO

PURPOSE: Myocardial fat infiltrations are associated with a range of cardiomyopathies. The purpose of this study was to perform cardio-respiratory motion-correction for model-based water-fat separation to image fatty infiltrations of the heart in a free-breathing, non-cardiac-triggered high-resolution 3D MRI acquisition. METHODS: Data were acquired in nine patients using a free-breathing, non-cardiac-triggered high-resolution 3D Dixon gradient-echo sequence and radial phase encoding trajectory. Motion correction was combined with a model-based water-fat reconstruction approach. Respiratory and cardiac motion models were estimated using a dual-mode registration algorithm incorporating both motion-resolved water and fat information. Qualitative comparisons of fat structures were made between 2D clinical routine reference scans and reformatted 3D motion-corrected images. To evaluate the effect of motion correction the local sharpness of epicardial fat structures was analyzed for motion-averaged and motion-corrected fat images. RESULTS: The reformatted 3D motion-corrected reconstructions yielded qualitatively comparable fat structures and fat structure sharpness in the heart as the standard 2D breath-hold. Respiratory motion correction improved the local sharpness on average by 32% ± 24% with maximum improvements of 81% and cardiac motion correction increased the sharpness further by another 15% ± 11% with maximum increases of 31%. One patient showed a fat infiltration in the myocardium and cardio-respiratory motion correction was able to improve its visualization in 3D. CONCLUSION: The 3D water-fat separated cardiac images were acquired during free-breathing and in a clinically feasible and predictable scan time. Compared to a motion-averaged reconstruction an increase in sharpness of fat structures by 51% ± 27% using the presented motion correction approach was observed for nine patients.


Assuntos
Coração , Água , Coração/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Movimento (Física)
11.
Magn Reson Med ; 87(6): 2621-2636, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35092090

RESUMO

PURPOSE: Respiratory motion-compensated (MC) 3D cardiac fat-water imaging at 7T. METHODS: Free-breathing bipolar 3D triple-echo gradient-recalled-echo (GRE) data with radial phase-encoding (RPE) trajectory were acquired in 11 healthy volunteers (7M\4F, 21-35 years, mean: 30 years) with a wide range of body mass index (BMI; 19.9-34.0 kg/m2 ) and volunteer tailored B1+ shimming. The bipolar-corrected triple-echo GRE-RPE data were binned into different respiratory phases (self-navigation) and were used for the estimation of non-rigid motion vector fields (MF) and respiratory resolved (RR) maps of the main magnetic field deviations (ΔB0 ). RR ΔB0 maps and MC ΔB0 maps were compared to a reference respiratory phase to assess respiration-induced changes. Subsequently, cardiac binned fat-water images were obtained using a model-based, respiratory motion-corrected image reconstruction. RESULTS: The 3D cardiac fat-water imaging at 7T was successfully demonstrated. Local respiration-induced frequency shifts in MC ΔB0 maps are small compared to the chemical shifts used in the multi-peak model. Compared to the reference exhale ΔB0 map these changes are in the order of 10 Hz on average. Cardiac binned MC fat-water reconstruction reduced respiration induced blurring in the fat-water images, and flow artifacts are reduced in the end-diastolic fat-water separated images. CONCLUSION: This work demonstrates the feasibility of 3D fat-water imaging at UHF for the entire human heart despite spatial and temporal B1+ and B0 variations, as well as respiratory and cardiac motion.


Assuntos
Imageamento por Ressonância Magnética , Água , Artefatos , Humanos , Imageamento Tridimensional , Movimento (Física) , Respiração
12.
Magn Reson Med ; 85(5): 2403-2416, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33226699

RESUMO

PURPOSE: To evaluate prospective motion correction using the pilot tone (PT) as a quantitative respiratory motion signal with high temporal resolution for cardiac cine images during free breathing. METHODS: Before cine data acquisition, a short prescan was performed, calibrating the PT to the respiratory-induced heart motion using respiratory-resolved real-time images. The calibrated PT was then applied for nearly real-time prospective motion correction of cine MRI through slice tracking (ie, updating the slice position before every readout). Additionally, in-plane motion correction was performed retrospectively also based on the calibrated PT data. The proposed method was evaluated in a moving phantom and 10 healthy volunteers. RESULTS: The PT showed very good correlation to the phantom motion. In volunteer studies using a long-term scan over 7.96 ± 1.40 min, the mean absolute error between registered and predicted motion from the PT was 1.44 ± 0.46 mm in head-feet and 0.46 ± 0.07 mm in anterior-posterior direction. Irregular breathing could also be corrected well with the PT. The PT motion correction leads to a significant improvement of contrast-to-noise ratio by 68% (P ≤ .01) between blood pool and myocardium and sharpness of endocardium by 24% (P = .04) in comparison to uncorrected data. The image score, which refers to the cine image quality, has improved with the utilization of the proposed PT motion correction. CONCLUSION: The proposed approach provides respiratory motion-corrected cine images of the heart with improved image quality and a high scan efficiency using the PT. The PT is independent of the MR acquisition, making this a very flexible motion-correction approach.


Assuntos
Coração , Imagem Cinética por Ressonância Magnética , Coração/diagnóstico por imagem , Humanos , Movimento (Física) , Estudos Prospectivos , Reprodutibilidade dos Testes , Respiração , Estudos Retrospectivos
13.
Magn Reson Med ; 85(5): 2552-2567, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33283915

RESUMO

PURPOSE: To introduce and investigate a method for free-breathing three-dimensional (3D) B1+ mapping of the human body at ultrahigh field (UHF), which can be used to generate homogenous flip angle (FA) distributions in the human body at UHF. METHODS: A 3D relative B1+ mapping sequence with a radial phase-encoding (RPE) k-space trajectory was developed and applied in 11 healthy subjects at 7T. An RPE-based actual flip angle mapping method was applied with a dedicated B1+ shim setting to calibrate the relative B1+ maps yielding absolute B1+ maps of the individual transmit channels. The method was evaluated in a motion phantom and by multidimensional in vivo measurements. Additionally, 3D gradient echo scans with and without static phase-only B1+ shims were used to qualitatively validate B1+ shim predictions. RESULTS: The phantom validation revealed good agreement for B1+ maps between dynamic measurement and static reference acquisition. The proposed 3D method was successfully validated in vivo by comparing magnitude and phase distributions with a 2D Cartesian reference. 3D B1+ maps free from visible motion artifacts were successfully acquired for 11 subjects with body mass indexes ranging from 19 kg/m2 to 34 kg/m2 . 3D respiration-resolved absolute B1+ maps indicated FA differences between inhalation and exhalation up to 15% for one channel and up to 24% for combined channels for shallow breathing. CONCLUSION: The proposed method provides respiration-resolved absolute 3D B1+ maps of the human body at UHF, which enables the investigation and development of 3D B1+ shimming and parallel transmission methods to further enhance body imaging at UHF.


Assuntos
Corpo Humano , Interpretação de Imagem Assistida por Computador , Artefatos , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Respiração
14.
Eur J Nucl Med Mol Imaging ; 48(8): 2455-2465, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33474584

RESUMO

BACKGROUND: Cardiac PET has recently found novel applications in coronary atherosclerosis imaging using [18F]NaF as a radiotracer, highlighting vulnerable plaques. However, the resulting uptakes are relatively small, and cardiac motion and respiration-induced movement of the heart can impair the reconstructed images due to motion blurring and attenuation correction mismatches. This study aimed to apply an MR-based motion compensation framework to [18F]NaF data yielding high-resolution motion-compensated PET and MR images. METHODS: Free-breathing 3-dimensional Dixon MR data were acquired, retrospectively binned into multiple respiratory and cardiac motion states, and split into fat and water fraction using a model-based reconstruction framework. From the dynamic MR reconstructions, both a non-rigid cardiorespiratory motion model and a motion-resolved attenuation map were generated and applied to the PET data to improve image quality. The approach was tested in 10 patients and focal tracer hotspots were evaluated concerning their target-to-background ratio, contrast-to-background ratio, and their diameter. RESULTS: MR-based motion models were successfully applied to compensate for physiological motion in both PET and MR. Target-to-background ratios of identified plaques improved by 7 ± 7%, contrast-to-background ratios by 26 ± 38%, and the plaque diameter decreased by -22 ± 18%. MR-based dynamic attenuation correction strongly reduced attenuation correction artefacts and was not affected by stent-related signal voids in the underlying MR reconstructions. CONCLUSIONS: The MR-based motion correction framework presented here can improve the target-to-background, contrast-to-background, and width of focal tracer hotspots in the coronary system. The dynamic attenuation correction could effectively mitigate the risk of attenuation correction artefacts in the coronaries at the lung-soft tissue boundary. In combination, this could enable a more reproducible and reliable plaque localisation.


Assuntos
Imagem Multimodal , Tomografia por Emissão de Pósitrons , Artefatos , Coração , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Estudos Retrospectivos
15.
J Magn Reson Imaging ; 53(5): 1446-1457, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33155758

RESUMO

BACKGROUND: Improvements in outcomes for patients with congenital heart disease (CHD) have increased the need for diagnostic and interventional procedures. Cumulative radiation risk is a growing concern. MRI-guided interventions are a promising ionizing radiation-free, alternative approach. PURPOSE: To assess the feasibility of MRI-guided catheterization in young patients with CHD using advanced visualization passive tracking techniques. STUDY TYPE: Prospective. POPULATION: A total of 30 patients with CHD referred for MRI-guided catheterization and pulmonary vascular resistance analysis (median age/weight: 4 years / 15 kg). FIELD STRENGTH/SEQUENCE: 1.5T; partially saturated (pSAT) real-time single-shot balanced steady-state free-precession (bSSFP) sequence. ASSESSMENT: Images were visualized by a single viewer on the scanner console (interactive mode) or using a commercially available advanced visualization platform (iSuite, Philips). Image quality for anatomy and catheter visualization was evaluated by three cardiologists with >5 years' experience in MRI-catheterization using a 1-5 scale (1, poor, 5, excellent). Catheter balloon signal-to-noise ratio (SNR), blood and myocardium SNR, catheter balloon/blood contrast-to-noise ratio (CNR), balloon/myocardium CNR, and blood/myocardium CNR were measured. Procedure findings, feasibility, and adverse events were recorded. A fraction of time in which the catheter was visible was compared between iSuite and the interactive mode. STATISTICAL TESTS: T-test for numerical variables. Wilcoxon signed rank test for categorical variables. RESULTS: Nine patients had right heart catheterization, 11 had both left and right heart catheterization, and 10 had single ventricle circulation. Nine patients underwent solely MRI-guided catheterization. The mean score for anatomical visualization and contrast between balloon tip and soft tissue was 3.9 ± 0.9 and 4.5 ± 0.7, respectively. iSuite provided a significant improvement in the time during which the balloon was visible in relation to interactive imaging mode (66 ± 17% vs. 46 ± 14%, P < 0.05). DATA CONCLUSION: MRI-guided catheterizations were carried out safely and is feasible in children and adults with CHD. The pSAT sequence offered robust and simultaneous high contrast visualization of the catheter and cardiac anatomy. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 1.


Assuntos
Cardiopatias Congênitas , Imagem por Ressonância Magnética Intervencionista , Adulto , Cateterismo Cardíaco , Criança , Pré-Escolar , Cardiopatias Congênitas/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Estudos Prospectivos
16.
PLoS Comput Biol ; 16(9): e1008086, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32966275

RESUMO

Clinical evidence suggests a link between fibrosis in the left atrium (LA) and atrial fibrillation (AF), the most common sustained arrhythmia. Image-derived fibrosis is increasingly used for patient stratification and therapy guidance. However, locations of re-entrant drivers (RDs) sustaining AF are unknown and therapy success rates remain suboptimal. This study used image-derived LA models to explore the dynamics of RD stabilization in fibrotic regions and generate maps of RD locations. LA models with patient-specific geometry and fibrosis distribution were derived from late gadolinium enhanced magnetic resonance imaging of 6 AF patients. In each model, RDs were initiated at multiple locations, and their trajectories were tracked and overlaid on the LA fibrosis distributions to identify the most likely regions where the RDs stabilized. The simulations showed that the RD dynamics were strongly influenced by the amount and spatial distribution of fibrosis. In patients with fibrosis burden greater than 25%, RDs anchored to specific locations near large fibrotic patches. In patients with fibrosis burden below 25%, RDs either moved near small fibrotic patches or anchored to anatomical features. The patient-specific maps of RD locations showed that areas that harboured the RDs were much smaller than the entire fibrotic areas, indicating potential targets for ablation therapy. Ablating the predicted locations and connecting them to the existing pulmonary vein ablation lesions was the most effective in-silico ablation strategy.


Assuntos
Fibrose , Átrios do Coração/patologia , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Modelos Biológicos
17.
Magn Reson Med ; 84(1): 327-338, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31873954

RESUMO

PURPOSE: Two-dimensional selective excitation (2DRF) allows shortening 4D flow scan times by reducing the FOV, but the longer 2DRF pulse duration decreases the temporal resolution, yielding underestimated peak flow values. Multiple k-space lines per cardiac phase, nl ≥ 2, are commonly applied in 4D flow MRI to shorten the inherent long scan times. We demonstrate that 2DRF 4D flow with nl ≥ 2 can be easily combined with UNFOLD (UNaliasing by Fourier-encoding the Overlaps using the temporaL Dimension), a technique that allows regaining nominally the temporal resolution of the respective acquisition with nl = 1, to assure peak flow quantification. METHODS: Two different 2DRF pulses with spiral k-space trajectories were designed and integrated into a 4D flow sequence. Flow phantom experiments and 7 healthy control 4D flow in vivo measurements, with and without UNFOLD reconstructions, were compared with conventional reconstruction and 1D slab-selective excitation (1DRF) by evaluating time-resolved flow curves, peak flow, peak velocity, blood flow volume per cardiac cycle, and spatial aliasing. RESULTS: Applying UNFOLD to 4D flow imaging with 2DRF and reduced FOV increased the quantified in vivo peak flow values significantly by 3.7% ± 2.3% to 5.2% ± 2.4% (P < .05). Accordingly, the peak flow underestimation of 2DRF scans compared with conventional 1DRF scans decreased with UNFOLD. Finally, 2DRF combined with UNFOLD accelerated the 4D flow acquisition 3.5 ± 1.4 fold by reducing the FOV and increasing the effective temporal resolution by 6.7% compared with conventional 1D selective excitation, with 2 k-space lines per cardiac phase. CONCLUSION: Two-dimensional selective excitation combined with UNFOLD allows limiting the FOV to shorten 4D flow scan times and compensates for the loss in temporal resolution with 2DRF (Δt = 64.8 ms) compared with 1DRF (Δt = 43.2 ms), yielding an effective resolution of Δteff = 40.5 ms to enhance peak flow quantification.


Assuntos
Coração , Imageamento por Ressonância Magnética , Velocidade do Fluxo Sanguíneo , Coração/diagnóstico por imagem , Hemodinâmica , Imageamento Tridimensional , Imagens de Fantasmas
18.
Magn Reson Med ; 83(2): 438-451, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31418924

RESUMO

PURPOSE: To improve the efficiency of native and postcontrast high-resolution cardiac T1 mapping by utilizing cardiac motion correction. METHODS: Common cardiac T1 mapping techniques only acquire data in a small part of the cardiac cycle, leading to inefficient data sampling. Here, we present an approach in which 80% of each cardiac cycle is used for T1 mapping by integration of cardiac motion correction. Golden angle radial data was acquired continuously for 8 s with in-plane resolution of 1.3 × 1.3 mm2 . Cine images were reconstructed for nonrigid cardiac motion estimation. Images at different TIs were reconstructed from the same data, and motion correction was performed prior to T1 mapping. Native T1 mapping was evaluated in healthy subjects. Furthermore, the technique was applied for postcontrast T1 mapping in 5 patients with suspected fibrosis. RESULTS: Cine images with high contrast were obtained, leading to robust cardiac motion estimation. Motion-corrected T1 maps showed myocardial T1 times similar to cardiac-triggered T1 maps obtained from the same data (1288 ± 49 ms and 1259 ± 55 ms, respectively) but with a 34% improved precision (spatial variation: 57.0 ± 12.5 ms and 94.8 ± 15.4 ms, respectively, P < 0.0001) due to the increased amount of data. In postcontrast T1 maps, focal fibrosis could be confirmed with late contrast-enhancement images. CONCLUSION: The proposed approach provides high-resolution T1 maps within 8 s. Data acquisition efficiency for T1 mapping was improved by a factor of 5 by integration of cardiac motion correction, resulting in precise T1 maps.


Assuntos
Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética , Miocárdio/patologia , Adulto , Algoritmos , Eletrocardiografia , Feminino , Fibrose , Gadolínio , Voluntários Saudáveis , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Movimento (Física) , Imagens de Fantasmas , Reprodutibilidade dos Testes , Estudos Retrospectivos , Processamento de Sinais Assistido por Computador , Adulto Jovem
19.
Magn Reson Med ; 84(5): 2429-2441, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32306471

RESUMO

PURPOSE: To develop an autocalibrated multiband (MB) CAIPIRINHA acquisition scheme with in-plane k-t acceleration enabling multislice three-directional tissue phase mapping in one breath-hold. METHODS: A k-t undersampling scheme was integrated into a time-resolved electrocardiographic-triggered autocalibrated MB gradient-echo sequence. The sequence was used to acquire data on 4 healthy volunteers with MB factors of two (MB2) and three (MB3), which were reconstructed using a joint reconstruction algorithm that tackles both k-t and MB acceleration. Forward simulations of the imaging process were used to tune the reconstruction model hyperparameters. Direct comparisons between MB and single-band tissue phase-mapping measurements were performed. RESULTS: Simulations showed that the velocities could be accurately reproduced with MB2 k-t (average ± twice the SD of the RMS error of 0.08 ± 0.22 cm/s and velocity peak reduction of 1.03% ± 6.47% compared with fully sampled velocities), whereas acceptable results were obtained with MB3 k-t (RMS error of 0.13 ± 0.58 cm/s and peak reduction of 2.21% ± 13.45%). When applied to tissue phase-mapping data, the proposed technique allowed three-directional velocity encoding to be simultaneously acquired at two/three slices in a single breath-hold of 18 heartbeats. No statistically significant differences were detected between MB2/MB3 k-t and single-band k-t motion traces averaged over the myocardium. Regional differences were found, however, when using the American Heart Association model for segmentation. CONCLUSION: An autocalibrated MB k-t acquisition/reconstruction framework is presented that allows three-directional velocity encoding of the myocardial velocities at multiple slices in one breath-hold.


Assuntos
Coração , Interpretação de Imagem Assistida por Computador , Aceleração , Algoritmos , Suspensão da Respiração , Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes
20.
Magn Reson Med ; 84(5): 2871-2884, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32426854

RESUMO

PURPOSE: Cardiovascular magnetic resonance first-pass perfusion for the pixel-wise detection of coronary artery disease is rapidly becoming the clinical standard, yet no widely available method exists for its assessment and validation. This study introduces a novel phantom capable of generating spatially dependent flow values to enable assessment of new perfusion imaging methods at the pixel level. METHODS: A synthetic multicapillary myocardial phantom mimicking transmural myocardial perfusion gradients was designed and manufactured with high-precision 3D printing. The phantom was used in a stationary flow setup providing reference myocardial perfusion rates and was scanned on a 3T system. Repeated first-pass perfusion MRI for physiological perfusion rates between 1 and 4 mL/g/min was performed using a clinical dual-sequence technique. Fermi function-constrained deconvolution was used to estimate pixel-wise perfusion rate maps. Phase contrast (PC)-MRI was used to obtain velocity measurements that were converted to perfusion rates for validation of reference values and cross-method comparison. The accuracy of pixel-wise maps was assessed against simulated reference maps. RESULTS: PC-MRI indicated excellent reproducibility in perfusion rate (coefficient of variation [CoV] 2.4-3.5%) and correlation with reference values (R2 = 0.985) across the full physiological range. Similar results were found for first-pass perfusion MRI (CoV 3.7-6.2%, R2 = 0.987). Pixel-wise maps indicated a transmural perfusion difference of 28.8-33.7% for PC-MRI and 23.8-37.7% for first-pass perfusion, matching the reference values (30.2-31.4%). CONCLUSION: The unique transmural perfusion pattern in the phantom allows effective pixel-wise assessment of first-pass perfusion acquisition protocols and quantification algorithms before their introduction into routine clinical use.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem de Perfusão do Miocárdio/métodos , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Impressão Tridimensional , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA