Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Top Curr Chem (Cham) ; 381(4): 15, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160833

RESUMO

Hydrogen peroxide is a powerful and green oxidant that allows for the oxidation of a wide span of organic and inorganic substrates in liquid media under mild reaction conditions, and forms only molecular water and oxygen as end products. Hydrogen peroxide is therefore used in a wide range of applications, for which the well-documented and established anthraquinone autoxidation process is by far the dominating production method at the industrial scale. As this method is highly energy consuming and environmentally costly, the search for more sustainable synthesis methods is of high interest. To this end, the article reviews the basis and the recent development of the photocatalytic synthesis of hydrogen peroxide. Different oxygen reduction and water oxidation mechanisms are discussed, as well as several kinetic models, and the influence of the main key reaction parameters is itemized. A large range of photocatalytic materials is reviewed, with emphasis on titania-based photocatalysts and on high-prospect graphitic carbon nitride-based systems that take advantage of advanced bulk and surface synthetic approaches. Strategies for enhancing the performances of solar-driven photocatalysts are reported, and the search for new, alternative, photocatalytic materials is detailed. Finally, the promise of in situ photocatalytic synthesis of hydrogen peroxide for water treatment and organic synthesis is described, as well as its coupling with enzymes and the direct in situ synthesis of other technical peroxides.


Assuntos
Peróxido de Hidrogênio , Oxigênio , Peróxidos , Indústrias , Cinética
2.
ACS Omega ; 6(28): 18434-18441, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34308074

RESUMO

11,12-Dihydrodibenzo[c,g]-1,2-diazocines have been established as a viable alternative to azobenzene for photoswitching, in particular, as they show an inverted switching behavior: the ground state is the Z isomer. In this paper, we present an improved method to obtain dibenzodiazocine and its derivatives from the respective 2-nitrotoluenes in two reaction steps, each proceeding in minutes. This fast access to a variety of derivatives permitted the study of substitution effects on the synthesis and on the photochemical properties. With biochemical applications in mind, methanol was chosen as a protic solvent system for the photochemical investigations. In contrast to the azobenzene system, none of the tested substitution patterns resulted in more efficient switching or in significantly prolonged half-lives, showing that the system is dominated by the ring strain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA