Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 109(9): 1605-1619, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36007526

RESUMO

Newborn screening (NBS) dramatically improves outcomes in severe childhood disorders by treatment before symptom onset. In many genetic diseases, however, outcomes remain poor because NBS has lagged behind drug development. Rapid whole-genome sequencing (rWGS) is attractive for comprehensive NBS because it concomitantly examines almost all genetic diseases and is gaining acceptance for genetic disease diagnosis in ill newborns. We describe prototypic methods for scalable, parentally consented, feedback-informed NBS and diagnosis of genetic diseases by rWGS and virtual, acute management guidance (NBS-rWGS). Using established criteria and the Delphi method, we reviewed 457 genetic diseases for NBS-rWGS, retaining 388 (85%) with effective treatments. Simulated NBS-rWGS in 454,707 UK Biobank subjects with 29,865 pathogenic or likely pathogenic variants associated with 388 disorders had a true negative rate (specificity) of 99.7% following root cause analysis. In 2,208 critically ill children with suspected genetic disorders and 2,168 of their parents, simulated NBS-rWGS for 388 disorders identified 104 (87%) of 119 diagnoses previously made by rWGS and 15 findings not previously reported (NBS-rWGS negative predictive value 99.6%, true positive rate [sensitivity] 88.8%). Retrospective NBS-rWGS diagnosed 15 children with disorders that had been undetected by conventional NBS. In 43 of the 104 children, had NBS-rWGS-based interventions been started on day of life 5, the Delphi consensus was that symptoms could have been avoided completely in seven critically ill children, mostly in 21, and partially in 13. We invite groups worldwide to refine these NBS-rWGS conditions and join us to prospectively examine clinical utility and cost effectiveness.


Assuntos
Triagem Neonatal , Medicina de Precisão , Criança , Estado Terminal , Testes Genéticos/métodos , Humanos , Recém-Nascido , Triagem Neonatal/métodos , Estudos Retrospectivos
3.
Genet Med ; 20(1): 142-150, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28726812

RESUMO

PurposeHeterozygous germ-line activating mutations in PDGFRB cause Kosaki and Penttinen syndromes and myofibromatosis. We describe a 10-year-old child with a germ-line PDGFRB p.N666H mutation who responded to the tyrosine kinase inhibitor imatinib by inhibition of PDGFRB.MethodsThe impact of p.N666H on PDGFRB function and sensitivity to imatinib was studied in cell culture.ResultsCells expressing the p.N666H mutation showed constitutive PDGFRB tyrosine phosphorylation. PDGF-independent proliferation was abolished by imatinib at 1 µM concentration. Patient fibroblasts showed constitutive receptor tyrosine phosphorylation that was also abrogated by imatinib with reduced proliferation of treated cells.This led to patient treatment with imatinib at 400 mg daily (340 mg/m2) for a year with objective improvement of debilitating hand and foot contractures, reduced facial coarseness, and significant improvement in quality of life. New small subcutaneous nodules developed, but remained stable. Transient leukopenia, neutropenia, and fatigue resolved without intervention; however, mildly decreased growth velocity resulted in reducing imatinib dose to 200 mg daily (170 mg/m2). The patient continues treatment with ongoing clinical response.ConclusionTo our knowledge, this is one of the first personalized treatments of a congenital disorder caused by a germ-line PDGF receptor mutation with a PDGFRB inhibitor.


Assuntos
Alelos , Substituição de Aminoácidos , Mutação com Ganho de Função , Mutação em Linhagem Germinativa , Mesilato de Imatinib/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Testes Genéticos , Humanos , Mesilato de Imatinib/farmacologia , Lactente , Imageamento por Ressonância Magnética , Masculino , Megalencefalia/diagnóstico , Megalencefalia/genética , Megalencefalia/cirurgia , Miofibromatose/congênito , Miofibromatose/diagnóstico , Miofibromatose/tratamento farmacológico , Miofibromatose/genética , Farmacogenética , Inibidores de Proteínas Quinases/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Resultado do Tratamento
5.
Genet Med ; 19(1): 104-111, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27362913

RESUMO

PURPOSE: The study's purpose was to delineate the genetic mutations that cause classic nonketotic hyperglycinemia (NKH). METHODS: Genetic results, parental phase, ethnic origin, and gender data were collected from subjects suspected to have classic NKH. Mutations were compared with those in the existing literature and to the population frequency from the Exome Aggregation Consortium (ExAC) database. RESULTS: In 578 families, genetic analyses identified 410 unique mutations, including 246 novel mutations. 80% of subjects had mutations in GLDC. Missense mutations were noted in 52% of all GLDC alleles, most private. Missense mutations were 1.5 times as likely to be pathogenic in the carboxy terminal of GLDC than in the amino-terminal part. Intragenic copy-number variations (CNVs) in GLDC were noted in 140 subjects, with biallelic CNVs present in 39 subjects. The position and frequency of the breakpoint for CNVs correlated with intron size and presence of Alu elements. Missense mutations, most often recurring, were the most common type of disease-causing mutation in AMT. Sequencing and CNV analysis identified biallelic pathogenic mutations in 98% of subjects. Based on genotype, 15% of subjects had an attenuated phenotype. The frequency of NKH is estimated at 1:76,000. CONCLUSION: The 484 unique mutations now known in classic NKH provide a valuable overview for the development of genotype-based therapies.Genet Med 19 1, 104-111.


Assuntos
Aminometiltransferase/genética , Complexo Glicina Descarboxilase/genética , Glicina Desidrogenase (Descarboxilante)/genética , Hiperglicinemia não Cetótica/genética , Alelos , Di-Hidrolipoamida Desidrogenase/genética , Éxons/genética , Feminino , Testes Genéticos , Genótipo , Glicina/genética , Glicina/metabolismo , Humanos , Hiperglicinemia não Cetótica/diagnóstico , Hiperglicinemia não Cetótica/patologia , Íntrons , Masculino , Mutação de Sentido Incorreto
6.
Am J Hum Genet ; 93(3): 506-14, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24011988

RESUMO

Derivatives of vitamin B12 (cobalamin) are essential cofactors for enzymes required in intermediary metabolism. Defects in cobalamin metabolism lead to disorders characterized by the accumulation of methylmalonic acid and/or homocysteine in blood and urine. The most common inborn error of cobalamin metabolism, combined methylmalonic acidemia and hyperhomocysteinemia, cblC type, is caused by mutations in MMACHC. However, several individuals with presumed cblC based on cellular and biochemical analysis do not have mutations in MMACHC. We used exome sequencing to identify the genetic basis of an X-linked form of combined methylmalonic acidemia and hyperhomocysteinemia, designated cblX. A missense mutation in a global transcriptional coregulator, HCFC1, was identified in the index case. Additional male subjects were ascertained through two international diagnostic laboratories, and 13/17 had one of five distinct missense mutations affecting three highly conserved amino acids within the HCFC1 kelch domain. A common phenotype of severe neurological symptoms including intractable epilepsy and profound neurocognitive impairment, along with variable biochemical manifestations, was observed in all affected subjects compared to individuals with early-onset cblC. The severe reduction in MMACHC mRNA and protein within subject fibroblast lines suggested a role for HCFC1 in transcriptional regulation of MMACHC, which was further supported by the identification of consensus HCFC1 binding sites in MMACHC. Furthermore, siRNA-mediated knockdown of HCFC1 expression resulted in the coordinate downregulation of MMACHC mRNA. This X-linked disorder demonstrates a distinct disease mechanism by which transcriptional dysregulation leads to an inborn error of metabolism with a complex clinical phenotype.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Genes Ligados ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Fator C1 de Célula Hospedeira/genética , Hiper-Homocisteinemia/genética , Mutação/genética , Vitamina B 12/genética , Idade de Início , Sequência de Aminoácidos , Sítios de Ligação , Análise Mutacional de DNA , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Predisposição Genética para Doença , Células HEK293 , Fator C1 de Célula Hospedeira/química , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Ligação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/metabolismo
7.
Am J Hum Genet ; 93(2): 197-210, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23810381

RESUMO

White matter hyperintensities (WMHs) of the brain are important markers of aging and small-vessel disease. WMHs are rare in healthy children and, when observed, often occur with comorbid neuroinflammatory or vasculitic processes. Here, we describe a complex 4 kb deletion in 2q36.3 that segregates with early childhood communication disorders and WMH in 15 unrelated families predominantly from Southeast Asia. The premature brain aging phenotype with punctate and multifocal WMHs was observed in ~70% of young carrier parents who underwent brain MRI. The complex deletion removes the penultimate exon 3 of TM4SF20, a gene encoding a transmembrane protein of unknown function. Minigene analysis showed that the resultant net loss of an exon introduces a premature stop codon, which, in turn, leads to the generation of a stable protein that fails to target to the plasma membrane and accumulates in the cytoplasm. Finally, we report this deletion to be enriched in individuals of Vietnamese Kinh descent, with an allele frequency of about 1%, embedded in an ancestral haplotype. Our data point to a constellation of early language delay and WMH phenotypes, driven by a likely toxic mechanism of TM4SF20 truncation, and highlight the importance of understanding and managing population-specific low-frequency pathogenic alleles.


Assuntos
Senilidade Prematura/genética , Sequência de Bases , Predisposição Genética para Doença , Transtornos do Desenvolvimento da Linguagem/genética , Leucoencefalopatias/genética , Deleção de Sequência , Tetraspaninas/genética , Idade de Início , Senilidade Prematura/complicações , Senilidade Prematura/etnologia , Senilidade Prematura/patologia , Povo Asiático , Encéfalo/metabolismo , Encéfalo/patologia , Criança , Pré-Escolar , Cromossomos Humanos Par 2 , Éxons , Feminino , Humanos , Transtornos do Desenvolvimento da Linguagem/complicações , Transtornos do Desenvolvimento da Linguagem/etnologia , Transtornos do Desenvolvimento da Linguagem/patologia , Leucoencefalopatias/complicações , Leucoencefalopatias/etnologia , Leucoencefalopatias/patologia , Imageamento por Ressonância Magnética , Masculino , Dados de Sequência Molecular , Linhagem , Análise de Sequência de DNA
8.
Mol Genet Metab ; 119(1-2): 50-6, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27397597

RESUMO

Glutaric aciduria type I (GA-I) is an autosomal recessive organic aciduria resulting from a functional deficiency of glutaryl-CoA dehydrogenase, encoded by GCDH. Two clinically indistinguishable diagnostic subgroups of GA-I are known; low and high excretors (LEs and HEs, respectively). Early medical and dietary interventions can result in significantly better outcomes and improved quality of life for patients with GA-I. We report on nine cases of GA-I LE patients all sharing the M405V allele with two cases missed by newborn screening (NBS) using tandem mass spectrometry (MS/MS). We describe a novel case with the known pathogenic M405V variant and a novel V133L variant, and present updated and previously unreported clinical, biochemical, functional and molecular data on eight other patients all sharing the M405V allele. Three of the nine patients are of African American ancestry, with two as siblings. GCDH activity was assayed in six of the nine patients and varied from 4 to 25% of the control mean. We support the use of urine glutarylcarnitine as a biochemical marker of GA-I by demonstrating that glutarylcarnitine is efficiently cleared by the kidney (50-90%) and that plasma and urine glutarylcarnitine follow a linear relationship. We report the allele frequencies for three known GA-I LE GCDH variants (M405V, V400M and R227P) and note that both the M405V and V400M variants are significantly more common in the population of African ancestry compared to the general population. This report highlights the M405V allele as another important molecular marker in patients with the GA-I LE phenotype. Therefore, the incorporation into newborn screening of molecular screening for the M405V and V400M variants in conjunction with MS/MS could help identify asymptomatic at-risk GA-I LE patients that could potentially be missed by current NBS programs.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Biomarcadores , Encefalopatias Metabólicas/genética , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/genética , Triagem Neonatal , Negro ou Afro-Americano/genética , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Encefalopatias Metabólicas/diagnóstico , Encefalopatias Metabólicas/fisiopatologia , Feminino , Frequência do Gene , Glutaratos/metabolismo , Humanos , Recém-Nascido , Masculino , Mutação , Fenótipo , Espectrometria de Massas em Tandem
9.
Ann Neurol ; 78(4): 606-18, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26179960

RESUMO

OBJECTIVE: Nonketotic hyperglycinemia is a neurometabolic disorder characterized by intellectual disability, seizures, and spasticity. Patients with attenuated nonketotic hyperglycinemia make variable developmental progress. Predictive factors have not been systematically assessed. METHODS: We reviewed 124 patients stratified by developmental outcome for biochemical and molecular predictive factors. Missense mutations were expressed to quantify residual activity using a new assay. RESULTS: Patients with severe nonketotic hyperglycinemia required multiple anticonvulsants, whereas patients with developmental quotient (DQ) > 30 did not require anticonvulsants. Brain malformations occurred mainly in patients with severe nonketotic hyperglycinemia (71%) but rarely in patients with attenuated nonketotic hyperglycinemia (7.5%). Neonatal presentation did not correlate with outcome, but age at onset ≥ 4 months was associated with attenuated nonketotic hyperglycinemia. Cerebrospinal fluid (CSF) glycine levels and CSF:plasma glycine ratio correlated inversely with DQ; CSF glycine > 230 µM indicated severe outcome and CSF:plasma glycine ratio ≤ 0.08 predicted attenuated outcome. The glycine index correlated strongly with outcome. Molecular analysis identified 99% of mutant alleles, including 96 novel mutations. Mutations near the active cleft of the P-protein maintained stable protein levels. Presence of 1 mutation with residual activity was necessary but not sufficient for attenuated outcome; 2 such mutations conferred best outcome. Divergent outcomes for the same genotype indicate a contribution of other genetic or nongenetic factors. INTERPRETATION: Accurate prediction of outcome is possible in most patients. A combination of 4 factors available neonatally predicted 78% of severe and 49% of attenuated patients, and a score based on mutation severity predicted outcome with 70% sensitivity and 97% specificity.


Assuntos
Glicina/genética , Glicina/metabolismo , Hiperglicinemia não Cetótica/genética , Hiperglicinemia não Cetótica/metabolismo , Mutação de Sentido Incorreto/genética , Animais , Células COS , Chlorocebus aethiops , Feminino , Glicina/química , Humanos , Hiperglicinemia não Cetótica/diagnóstico , Lactente , Recém-Nascido , Masculino , Valor Preditivo dos Testes , Prognóstico , Estrutura Secundária de Proteína
10.
J Med Genet ; 52(8): 532-40, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25787132

RESUMO

BACKGROUND: Mitochondrial disease is often suspected in cases of severe epileptic encephalopathy especially when a complex movement disorder, liver involvement and progressive developmental regression are present. Although mutations in either mitochondrial DNA or POLG are often present, other nuclear defects in mitochondrial DNA replication and protein translation have been associated with a severe epileptic encephalopathy. METHODS AND RESULTS: We identified a proband with an epileptic encephalopathy, complex movement disorder and a combined mitochondrial respiratory chain enzyme deficiency. The child presented with neurological regression, complex movement disorder and intractable seizures. A combined deficiency of mitochondrial complexes I, III and IV was noted in liver tissue, along with increased mitochondrial DNA content in skeletal muscle. Incomplete assembly of complex V, using blue native polyacrylamide gel electrophoretic analysis and complex I, using western blotting, suggested a disorder of mitochondrial transcription or translation. Exome sequencing identified compound heterozygous mutations in CARS2, a mitochondrial aminoacyl-tRNA synthetase. Both mutations affect highly conserved amino acids located within the functional ligase domain of the cysteinyl-tRNA synthase. A specific decrease in the amount of charged mt-tRNA(Cys) was detected in patient fibroblasts compared with controls. Retroviral transfection of the wild-type CARS2 into patient skin fibroblasts led to the correction of the incomplete assembly of complex V, providing functional evidence for the role of CARS2 mutations in disease aetiology. CONCLUSIONS: Our findings indicate that mutations in CARS2 result in a mitochondrial translational defect as seen in individuals with mitochondrial epileptic encephalopathy.


Assuntos
Aminoacil-tRNA Sintetases/genética , Encefalopatias/genética , Epilepsia/genética , Sequência de Aminoácidos , Aminoacilação , Criança , Análise Mutacional de DNA , Exoma , Humanos , Masculino , Dados de Sequência Molecular , RNA de Transferência/metabolismo , Alinhamento de Sequência
11.
Brain ; 137(Pt 2): 366-79, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24334290

RESUMO

Patients with nonketotic hyperglycinemia and deficient glycine cleavage enzyme activity, but without mutations in AMT, GLDC or GCSH, the genes encoding its constituent proteins, constitute a clinical group which we call 'variant nonketotic hyperglycinemia'. We hypothesize that in some patients the aetiology involves genetic mutations that result in a deficiency of the cofactor lipoate, and sequenced genes involved in lipoate synthesis and iron-sulphur cluster biogenesis. Of 11 individuals identified with variant nonketotic hyperglycinemia, we were able to determine the genetic aetiology in eight patients and delineate the clinical and biochemical phenotypes. Mutations were identified in the genes for lipoate synthase (LIAS), BolA type 3 (BOLA3), and a novel gene glutaredoxin 5 (GLRX5). Patients with GLRX5-associated variant nonketotic hyperglycinemia had normal development with childhood-onset spastic paraplegia, spinal lesion, and optic atrophy. Clinical features of BOLA3-associated variant nonketotic hyperglycinemia include severe neurodegeneration after a period of normal development. Additional features include leukodystrophy, cardiomyopathy and optic atrophy. Patients with lipoate synthase-deficient variant nonketotic hyperglycinemia varied in severity from mild static encephalopathy to Leigh disease and cortical involvement. All patients had high serum and borderline elevated cerebrospinal fluid glycine and cerebrospinal fluid:plasma glycine ratio, and deficient glycine cleavage enzyme activity. They had low pyruvate dehydrogenase enzyme activity but most did not have lactic acidosis. Patients were deficient in lipoylation of mitochondrial proteins. There were minimal and inconsistent changes in cellular iron handling, and respiratory chain activity was unaffected. Identified mutations were phylogenetically conserved, and transfection with native genes corrected the biochemical deficiency proving pathogenicity. Treatments of cells with lipoate and with mitochondrially-targeted lipoate were unsuccessful at correcting the deficiency. The recognition of variant nonketotic hyperglycinemia is important for physicians evaluating patients with abnormalities in glycine as this will affect the genetic causation and genetic counselling, and provide prognostic information on the expected phenotypic course.


Assuntos
Variação Genética/genética , Glutarredoxinas/genética , Hiperglicinemia não Cetótica/genética , Mutação/genética , Proteínas/genética , Sulfurtransferases/genética , Atrofia , Criança , Pré-Escolar , Evolução Fatal , Feminino , Glutarredoxinas/química , Humanos , Hiperglicinemia não Cetótica/diagnóstico , Hiperglicinemia não Cetótica/patologia , Lactente , Masculino , Proteínas Mitocondriais , Proteínas/química , Índice de Gravidade de Doença , Sulfurtransferases/química
12.
J Mol Diagn ; 26(3): 213-226, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38211722

RESUMO

Optical genome mapping is a high-resolution technology that can detect all types of structural variations in the genome. This second phase of a multisite study compares the performance of optical genome mapping and current standard-of-care methods for diagnostic testing of individuals with constitutional disorders, including neurodevelopmental impairments and congenital anomalies. Among the 627 analyses in phase 2, 405 were of retrospective samples supplied by five diagnostic centers in the United States and 94 were prospective samples collected over 18 months by two diagnostic centers (June 2021 to October 2022). Additional samples represented a family cohort to determine inheritance (n = 119) and controls (n = 9). Full concordance of results between optical genome mapping and one or more standard-of-care diagnostic tests was 98.6% (618/627), with partial concordance in an additional 1.1% (7/627).


Assuntos
Estudos Prospectivos , Humanos , Mapeamento Cromossômico , Estudos Retrospectivos , Recém-Nascido
13.
Clin Transl Sci ; 17(1): e13699, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38129972

RESUMO

The DPYD gene encodes dihydropyrimidine dehydrogenase, the rate-limiting enzyme for the metabolism of fluoropyrimidines 5-fluorouracil and capecitabine. Genetic variants in DPYD have been associated with altered enzyme activity, therefore accurate detection and interpretation is critical to predict metabolizer status for individualized fluoropyrimidine therapy. The most commonly observed deleterious variation is the causal variant linked to the previously described HapB3 haplotype, c.1129-5923C>G (rs75017182) in intron 10, which introduces a cryptic splice site. A benign synonymous variant in exon 11, c.1236G>A (rs56038477) is also linked to HapB3 and is commonly used for testing. Previously, these single-nucleotide polymorphisms (SNPs) have been reported to be in perfect linkage disequilibrium (LD); therefore, c.1236G>A is often utilized as a proxy for the function-altering intronic variant. Clinical genotyping of DPYD identified a patient who had c.1236G>A, but not c.1129-5923C>G, suggesting that these two SNPs may not be in perfect LD, as previously assumed. Additional individuals with c.1236G>A, but not c.1129-5923C>G, were identified in the Children's Mercy Data Warehouse and the All of Us Research Program version 7 cohort substantiating incomplete SNP linkage. Consequently, testing only c.1236G>A can generate false-positive results in some cases and lead to suboptimal dosing that may negatively impact patient therapy and prospect of survival. Our data show that DPYD genotyping should include the functional variant c.1129-5923C>G, and not the c.1236G>A proxy, to accurately predict DPD activity.


Assuntos
Di-Hidrouracila Desidrogenase (NADP) , Saúde da População , Criança , Humanos , Di-Hidrouracila Desidrogenase (NADP)/metabolismo , Haplótipos , Antimetabólitos Antineoplásicos , Testes Farmacogenômicos , Genótipo
14.
Am J Med Genet A ; 161A(12): 2953-63, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24123848

RESUMO

Structural rearrangements of chromosome 19p are rare, and their resulting phenotypic consequences are not well defined. This is the first study to report a cohort of eight patients with subtelomeric 19p13.3 microdeletions, identified using clinical chromosomal microarray analysis (CMA). The deletion sizes ranged from 0.1 to 0.86 Mb. Detailed analysis of the patients' clinical features has enabled us to define a constellation of clinical abnormalities that include growth delay, multiple congenital anomalies, global developmental delay, learning difficulties, and dysmorphic facial features. There are eight genes in the 19p13.3 region that may potentially contribute to the clinical phenotype via haploinsufficiency. Moreover, in silico genomic analysis of 19p13.3 microdeletion breakpoints revealed numerous highly repetitive sequences, suggesting LINEs/SINEs-mediated events in generating these microdeletions. Thus, subtelomeric 19p13.3 appears important for normal embryonic and childhood development. The clinical description of patients with deletions in this genomic interval will assist clinicians to identify and treat individuals with similar deletions.


Assuntos
Deleção Cromossômica , Deficiências do Desenvolvimento/genética , Estudos de Associação Genética , Deficiência Intelectual/genética , Telômero/genética , Adulto , Criança , Pontos de Quebra do Cromossomo , Cromossomos Humanos Par 19/genética , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Hibridização in Situ Fluorescente , Lactente , Recém-Nascido , Deficiência Intelectual/patologia , Elementos Nucleotídeos Longos e Dispersos/genética , Masculino , Análise em Microsséries
15.
Front Pharmacol ; 14: 1195778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426826

RESUMO

Complex regions in the human genome such as repeat motifs, pseudogenes and structural (SVs) and copy number variations (CNVs) present ongoing challenges to accurate genetic analysis, particularly for short-read Next-Generation-Sequencing (NGS) technologies. One such region is the highly polymorphic CYP2D loci, containing CYP2D6, a clinically relevant pharmacogene contributing to the metabolism of >20% of common drugs, and two highly similar pseudogenes, CYP2D7 and CYP2D8. Multiple complex SVs, including CYP2D6/CYP2D7-derived hybrid genes are known to occur in different configurations and frequencies across populations and are difficult to detect and characterize accurately. This can lead to incorrect enzyme activity assignment and impact drug dosing recommendations, often disproportionally affecting underrepresented populations. To improve CYP2D6 genotyping accuracy, we developed a PCR-free CRISPR-Cas9 based enrichment method for targeted long-read sequencing that fully characterizes the entire CYP2D6-CYP2D7-CYP2D8 loci. Clinically relevant sample types, including blood, saliva, and liver tissue were sequenced, generating high coverage sets of continuous single molecule reads spanning the entire targeted region of up to 52 kb, regardless of SV present (n = 9). This allowed for fully phased dissection of the entire loci structure, including breakpoints, to accurately resolve complex CYP2D6 diplotypes with a single assay. Additionally, we identified three novel CYP2D6 suballeles, and fully characterized 17 CYP2D7 and 18 CYP2D8 unique haplotypes. This method for CYP2D6 genotyping has the potential to significantly improve accurate clinical phenotyping to inform drug therapy and can be adapted to overcome testing limitations of other clinically challenging genomic regions.

16.
J Genet ; 1022023.
Artigo em Inglês | MEDLINE | ID: mdl-36814108

RESUMO

Pediatric cardiomyopathies (CM) are rare and challenging to diagnose due to the complex and mixed phenotypes. With the advent of next-generation sequencing (NGS), variants in several genes associated with CM have been identified, such as Troponin C (TnC), encoded by the TNNC1 gene. De novo variants in TNNC1 have been associated with different types of CM, including dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). The American College of Medical Genetics and Genomics recently added TNNC1 to their recommended list of genes for reporting secondary findings. In this study, we report a de novo variant, c.100G>C (p.Gly34Arg) in the TNNC1 gene identified in three siblings with a diagnosis of severe DCM causing infant death for one of the siblings and stillbirth in the other two pregnancies. The identification of the same de novo variant in all affected siblings is suggestive of germline mosaicism in this family.


Assuntos
Cardiomiopatia Dilatada , Troponina C , Feminino , Humanos , Recém-Nascido , Gravidez , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/mortalidade , Mortalidade Infantil , Mosaicismo , Mutação , Natimorto/genética , Troponina C/genética
17.
J Mol Diagn ; 25(3): 175-188, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36828597

RESUMO

This study compares optical genome mapping (OGM) performed at multiple sites with current standard-of-care (SOC) methods used in clinical cytogenetics. This study included 50 negative controls and 359 samples from individuals (patients) with suspected genetic conditions referred for cytogenetic testing. OGM was performed using the Saphyr system and Bionano Access software version 1.7. Structural variants, including copy number variants, aneuploidy, and regions of homozygosity, were detected and classified according to American College of Medical Genetics and Genomics guidelines. Repeated expansions in FMR1 and contractions in facioscapulohumeral dystrophy 1 were also analyzed. OGM results were compared with SOC for technical concordance, clinical classification concordance, intrasite and intersite reproducibility, and ability to provide additional, clinically relevant information. Across five testing sites, 98.8% (404/409) of samples yielded successful OGM data for analysis and interpretation. Overall, technical concordance for OGM to detect previously reported SOC results was 99.5% (399/401). The blinded analysis and variant classification agreement between SOC and OGM was 97.6% (364/373). Replicate analysis of 130 structural variations was 100% concordant. On the basis of this demonstration of the analytic validity and clinical utility of OGM by this multisite assessment, the authors recommend this technology as an alternative to existing SOC tests for rapid detection and diagnosis in postnatal constitutional disorders.


Assuntos
Aneuploidia , Genômica , Humanos , Reprodutibilidade dos Testes , Citogenética , Mapeamento Cromossômico , Proteína do X Frágil da Deficiência Intelectual
18.
J Inherit Metab Dis ; 35(2): 253-61, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22002442

RESUMO

OBJECTIVE: Glycine encephalopathy (GE) is a rare autosomal recessive inborn error of glycine degradation resulting in severe encephalopathy with ensuing poor outcome. Attenuated variants with a significantly better outcome have been reported. Early prediction of long-term outcome is not yet possible. METHODS: We compared the clinical and biochemical features of 45 children, each with a different course of the disease, to help determine predictors of long-term outcome. RESULTS: The most common presenting symptoms were hypotonia, seizures, and coma. In this study, 85% of the patients presented within the first week of life, and 15% presented after the neonatal period up to the age of 12 months. Developmental progress was made by 19% of those children presenting during the neonatal period and by 50% of those presenting in infancy. Initial CSF and plasma glycine concentrations were not useful in differentiating severe and attenuated outcome. A severe outcome was significantly associated with early onset of spasticity, frequent hiccupping, EEG burst-suppression or hypsarrhythmia patterns, microcephaly, and congenital or cerebral malformations, e.g. corpus callosum hypoplasia. An attenuated outcome was significantly associated with hyperactivity and choreiform movement disorders. We describe a severity score which facilitates the prediction of the outcome in patients with GE. CONCLUSION: Prediction of the outcome of GE may be facilitated by recognizing selected clinical parameters and early neuroimaging findings.


Assuntos
Hiperglicinemia não Cetótica/diagnóstico , Hiperglicinemia não Cetótica/terapia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Hiperglicinemia não Cetótica/patologia , Lactente , Masculino , Gravidez , Complicações na Gravidez/diagnóstico , Diagnóstico Pré-Natal/métodos , Prognóstico , Tempo , Adulto Jovem
19.
Nat Commun ; 13(1): 4057, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882841

RESUMO

While many genetic diseases have effective treatments, they frequently progress rapidly to severe morbidity or mortality if those treatments are not implemented immediately. Since front-line physicians frequently lack familiarity with these diseases, timely molecular diagnosis may not improve outcomes. Herein we describe Genome-to-Treatment, an automated, virtual system for genetic disease diagnosis and acute management guidance. Diagnosis is achieved in 13.5 h by expedited whole genome sequencing, with superior analytic performance for structural and copy number variants. An expert panel adjudicated the indications, contraindications, efficacy, and evidence-of-efficacy of 9911 drug, device, dietary, and surgical interventions for 563 severe, childhood, genetic diseases. The 421 (75%) diseases and 1527 (15%) effective interventions retained are integrated with 13 genetic disease information resources and appended to diagnostic reports ( https://gtrx.radygenomiclab.com ). This system provided correct diagnoses in four retrospectively and two prospectively tested infants. The Genome-to-Treatment system facilitates optimal outcomes in children with rapidly progressive genetic diseases.


Assuntos
Variações do Número de Cópias de DNA , Criança , Humanos , Lactente , Estudos Retrospectivos , Sequenciamento Completo do Genoma
20.
Mol Genet Metab ; 104(1-2): 48-60, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21704546

RESUMO

Antiquitin (ATQ) deficiency is the main cause of pyridoxine dependent epilepsy characterized by early onset epileptic encephalopathy responsive to large dosages of pyridoxine. Despite seizure control most patients have intellectual disability. Folinic acid responsive seizures (FARS) are genetically identical to ATQ deficiency. ATQ functions as an aldehyde dehydrogenase (ALDH7A1) in the lysine degradation pathway. Its deficiency results in accumulation of α-aminoadipic semialdehyde (AASA), piperideine-6-carboxylate (P6C) and pipecolic acid, which serve as diagnostic markers in urine, plasma, and CSF. To interrupt seizures a dose of 100 mg of pyridoxine-HCl is given intravenously, or orally/enterally with 30 mg/kg/day. First administration may result in respiratory arrest in responders, and thus treatment should be performed with support of respiratory management. To make sure that late and masked response is not missed, treatment with oral/enteral pyridoxine should be continued until ATQ deficiency is excluded by negative biochemical or genetic testing. Long-term treatment dosages vary between 15 and 30 mg/kg/day in infants or up to 200 mg/day in neonates, and 500 mg/day in adults. Oral or enteral pyridoxal phosphate (PLP), up to 30 mg/kg/day can be given alternatively. Prenatal treatment with maternal pyridoxine supplementation possibly improves outcome. PDE is an organic aciduria caused by a deficiency in the catabolic breakdown of lysine. A lysine restricted diet might address the potential toxicity of accumulating αAASA, P6C and pipecolic acid. A multicenter study on long term outcomes is needed to document potential benefits of this additional treatment. The differential diagnosis of pyridoxine or PLP responsive seizure disorders includes PLP-responsive epileptic encephalopathy due to PNPO deficiency, neonatal/infantile hypophosphatasia (TNSALP deficiency), familial hyperphosphatasia (PIGV deficiency), as well as yet unidentified conditions and nutritional vitamin B6 deficiency. Commencing treatment with PLP will not delay treatment in patients with pyridox(am)ine phosphate oxidase (PNPO) deficiency who are responsive to PLP only.


Assuntos
Aldeído Desidrogenase/deficiência , Epilepsia/diagnóstico , Epilepsia/terapia , Guias de Prática Clínica como Assunto , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Biomarcadores/metabolismo , Epilepsia/genética , Epilepsia/fisiopatologia , Seguimentos , Humanos , Vitamina B 6/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA