Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Dev Biol ; 460(2): 139-154, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31816285

RESUMO

Embryonic development is arguably the most complex process an organism undergoes during its lifetime, and understanding this complexity is best approached with a systems-level perspective. The sea urchin has become a highly valuable model organism for understanding developmental specification, morphogenesis, and evolution. As a non-chordate deuterostome, the sea urchin occupies an important evolutionary niche between protostomes and vertebrates. Lytechinus variegatus (Lv) is an Atlantic species that has been well studied, and which has provided important insights into signal transduction, patterning, and morphogenetic changes during embryonic and larval development. The Pacific species, Strongylocentrotus purpuratus (Sp), is another well-studied sea urchin, particularly for gene regulatory networks (GRNs) and cis-regulatory analyses. A well-annotated genome and transcriptome for Sp are available, but similar resources have not been developed for Lv. Here, we provide an analysis of the Lv transcriptome at 11 timepoints during embryonic and larval development. Temporal analysis suggests that the gene regulatory networks that underlie specification are well-conserved among sea urchin species. We show that the major transitions in variation of embryonic transcription divide the developmental time series into four distinct, temporally sequential phases. Our work shows that sea urchin development occurs via sequential intervals of relatively stable gene expression states that are punctuated by abrupt transitions.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Redes Reguladoras de Genes/fisiologia , Lytechinus/embriologia , Transcriptoma/fisiologia , Animais , Strongylocentrotus purpuratus/embriologia
2.
Dev Biol ; 406(2): 259-70, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26282894

RESUMO

The bioelectrical signatures associated with regeneration, wound healing, development, and cancer are changes in the polarization state of the cell that persist over long durations, and are mediated by ion channel activity. To identify physiologically relevant bioelectrical changes that occur during normal development of the sea urchin Lytechinus variegatus, we tested a range of ion channel inhibitors, and thereby identified SCH28080, a chemical inhibitor of the H(+)/K(+) ATPase (HKA), as an inhibitor of skeletogenesis. In sea urchin embryos, the primary mesodermal lineage, the PMCs, produce biomineral in response to signals from the ectoderm. However, in SCH28080-treated embryos, aside from randomization of the left-right axis, the ectoderm is normally specified and differentiated, indicating that the block to skeletogenesis observed in SCH28080-treated embryos is PMC-specific. HKA inhibition did not interfere with PMC specification, and was sufficient to block continuing biomineralization when embryos were treated with SCH28080 after the initiation of skeletogenesis, indicating that HKA activity is continuously required during biomineralization. Ion concentrations and voltage potential were abnormal in the PMCs in SCH28080-treated embryos, suggesting that these bioelectrical abnormalities prevent biomineralization. Our results indicate that this effect is due to the inhibition of amorphous calcium carbonate precipitation within PMC vesicles.


Assuntos
Exoesqueleto/química , Embrião não Mamífero/enzimologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Morfogênese/fisiologia , Ouriços-do-Mar/embriologia , Animais , Primers do DNA/genética , Embrião não Mamífero/citologia , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação Enzimológica da Expressão Gênica/genética , Imidazóis , Hibridização in Situ Fluorescente , Minerais/análise , Reação em Cadeia da Polimerase , Ouriços-do-Mar/enzimologia
3.
Proc Natl Acad Sci U S A ; 109(32): 13076-81, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22826226

RESUMO

Cancer-associated thrombosis often lacks a clear etiology. However, it is linked to a poor prognosis and represents the second-leading cause of death in cancer patients. Recent studies have shown that chromatin released into blood, through the generation of neutrophil extracellular traps (NETs), is procoagulant and prothrombotic. Using a murine model of chronic myelogenous leukemia, we show that malignant and nonmalignant neutrophils are more prone to NET formation. This increased sensitivity toward NET generation is also observed in mammary and lung carcinoma models, suggesting that cancers, through a systemic effect on the host, can induce an increase in peripheral blood neutrophils, which are predisposed to NET formation. In addition, in the late stages of the breast carcinoma model, NETosis occurs concomitant with the appearance of venous thrombi in the lung. Moreover, simulation of a minor systemic infection in tumor-bearing, but not control, mice results in the release of large quantities of chromatin and a prothrombotic state. The increase in neutrophil count and their priming is mediated by granulocyte colony-stimulating factor (G-CSF), which accumulates in the blood of tumor-bearing mice. The prothrombotic state in cancer can be reproduced by treating mice with G-CSF combined with low-dose LPS and leads to thrombocytopenia and microthrombosis. Taken together, our results identify extracellular chromatin released through NET formation as a cause for cancer-associated thrombosis and unveil a target in the effort to decrease the incidence of thrombosis in cancer patients.


Assuntos
Cromatina/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/complicações , Neutrófilos/metabolismo , Trombose/etiologia , Animais , Western Blotting , Cromatina/imunologia , DNA/sangue , Ensaio de Imunoadsorção Enzimática , Fluorescência , Fator Estimulador de Colônias de Granulócitos/sangue , Técnicas Histológicas , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/imunologia , Estatísticas não Paramétricas , Trombose/prevenção & controle
4.
Blood ; 120(6): 1157-64, 2012 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-22611154

RESUMO

Thrombotic microangiopathies (TMAs) are a group of life-threatening disorders characterized by thrombocytopenia, fragmentation of erythrocytes, and ischemic organ damage. Genetic disorders, autoimmune disease, and cancer are risk factors for TMAs, but an additional, unknown trigger is needed to bring about acute disease. Recent studies suggest that DNA and histones are released during inflammation or infection and stimulate coagulation, thrombosis, thrombocytopenia, and organ damage in mice. We show that extracellular DNA and histones as well as markers of neutrophils are present in acute TMAs. Analysis of plasma from TMA patients of different clinical categories revealed elevated levels of DNA-histone complexes and myeloperoxidase (MPO) from neutrophil granules as well as S100A8/A9, a heterocomplex abundant in neutrophil cytosol. During therapy of thrombotic thrombocytopenic purpura, a subtype of TMAs often associated with severe ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13) deficiency, plasma DNA and MPO were inversely correlated with platelet counts, and their levels indicated amelioration or exacerbation of the disease. ADAMTS13 deficiency together with increased levels of plasma DNA and MPO were characteristic for acute thrombotic thrombocytopenic purpura. A minor infection often precedes acute TMA and extracellular DNA and histones released during the inflammatory response could provide the second hit, which precipitates acute TMA in patients with pre-existing risk factors.


Assuntos
DNA/sangue , Peroxidase/sangue , Microangiopatias Trombóticas/sangue , Microangiopatias Trombóticas/diagnóstico , Doença Aguda , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Estudos de Coortes , DNA/análise , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nucleossomos/patologia , Peroxidase/análise , Prognóstico , Indução de Remissão , Microangiopatias Trombóticas/terapia
5.
Blood ; 119(26): 6335-43, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22596262

RESUMO

Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related death. The biologic processes contributing to TRALI are poorly understood. All blood products can cause TRALI, and no specific treatment is available. A "2-event model" has been proposed as the trigger. The first event may include surgery, trauma, or infection; the second involves the transfusion of antileukocyte antibodies or bioactive lipids within the blood product. Together, these events induce neutrophil activation in the lungs, causing endothelial damage and capillary leakage. Neutrophils, in response to pathogens or under stress, can release their chromatin coated with granule contents, thus forming neutrophil extracellular traps (NETs). Although protective against infection, these NETs are injurious to tissue. Here we show that NET biomarkers are present in TRALI patients' blood and that NETs are produced in vitro by primed human neutrophils when challenged with anti-HNA-3a antibodies previously implicated in TRALI. NETs are found in alveoli of mice experiencing antibody-mediated TRALI. DNase 1 inhalation prevents their alveolar accumulation and improves arterial oxygen saturation even when administered 90 minutes after TRALI onset. We suggest that NETs form in the lungs during TRALI, contribute to the disease process, and thus could be targeted to prevent or treat TRALI.


Assuntos
Lesão Pulmonar Aguda/etiologia , DNA/imunologia , DNA/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Reação Transfusional , Lesão Pulmonar Aguda/imunologia , Animais , Doadores de Sangue , Células Cultivadas , Espaço Extracelular/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ativação de Neutrófilo/imunologia , Neutrófilos/patologia , Imunologia de Transplantes , Transplante Homólogo/imunologia
6.
Blood ; 120(26): 5217-23, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22915644

RESUMO

Coronary heart disease is a major cause of death in the western world. Although essential for successful recovery, reperfusion of ischemic myocardium is inevitably associated with reperfusion injury. To investigate a potential protective role of ADAMTS13, a protease cleaving von Willebrand factor multimers, during myocardial ischemia/reperfusion, we used a mouse model of acute myocardial infarction. We found that Adamts13(-/-) mice developed larger myocardial infarctions than wild-type control mice, whereas treatment of wild-type mice with recombinant human ADAMTS13 (rhADAMTS13) led to smaller infarctions. The protective effect of ADAMTS13 was further confirmed by a significant reduction of cardiac troponin-I release and less myocardial apoptosis in mice that received rhADAMTS13 compared with controls. Platelets adherent to the blood vessel wall were observed in few areas in the heart samples from mice treated with vehicle and were not detected in samples from mice treated with rhADAMTS13. However, we observed a 9-fold reduction in number of neutrophils infiltrating ischemic myocardium in mice that were treated with rhADAMTS13, suggesting a potent anti-inflammatory effect of ADAMTS13 during heart injury. Our data show that ADAMTS13 reduces myocardial ischemia/reperfusion injury in mice and indicate that rhADAMTS13 could be of therapeutic value to limit myocardial ischemia/reperfusion injury.


Assuntos
Proteínas ADAM/farmacologia , Anti-Inflamatórios/farmacologia , Cardiotônicos/farmacologia , Citoproteção/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Proteínas ADAM/efeitos adversos , Proteínas ADAM/farmacocinética , Proteínas ADAM/uso terapêutico , Proteína ADAMTS13 , Animais , Anti-Inflamatórios/efeitos adversos , Anti-Inflamatórios/farmacocinética , Células CHO , Cardiotônicos/efeitos adversos , Cardiotônicos/farmacocinética , Cricetinae , Cricetulus , Citoproteção/genética , Humanos , Masculino , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Metaloendopeptidases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico
7.
Proc Natl Acad Sci U S A ; 107(36): 15880-5, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20798043

RESUMO

Neutrophil extracellular traps (NETs) are part of the innate immune response to infections. NETs are a meshwork of DNA fibers comprising histones and antimicrobial proteins. Microbes are immobilized in NETs and encounter a locally high and lethal concentration of effector proteins. Recent studies show that NETs are formed inside the vasculature in infections and noninfectious diseases. Here we report that NETs provide a heretofore unrecognized scaffold and stimulus for thrombus formation. NETs perfused with blood caused platelet adhesion, activation, and aggregation. DNase or the anticoagulant heparin dismantled the NET scaffold and prevented thrombus formation. Stimulation of platelets with purified histones was sufficient for aggregation. NETs recruited red blood cells, promoted fibrin deposition, and induced a red thrombus, such as that found in veins. Markers of extracellular DNA traps were detected in a thrombus and plasma of baboons subjected to deep vein thrombosis, an example of inflammation-enhanced thrombosis. Our observations indicate that NETs are a previously unrecognized link between inflammation and thrombosis and may further explain the epidemiological association of infection with thrombosis.


Assuntos
DNA/isolamento & purificação , Trombose/etiologia , Animais , Humanos
8.
Blood ; 115(9): 1835-42, 2010 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-19965619

RESUMO

Platelets undergo several modifications during storage that reduce their posttransfusion survival and functionality. One important feature of these changes, which are known as platelet storage lesion, is the shedding of the surface glycoproteins GPIb-alpha and GPV. We recently demonstrated that tumor necrosis factor-alpha converting enzyme (TACE/ADAM17) mediates mitochondrial injury-induced shedding of adhesion receptors and that TACE activity correlates with reduced posttransfusion survival of these cells. We now confirm that TACE mediates receptor shedding and clearance of platelets stored for 16 hours at 37 degrees C or 22 degrees C. We further demonstrate that both storage and mitochondrial injury lead to the phosphorylation of p38 mitogen-activated kinase (MAPK) in platelets and that TACE-mediated receptor shedding from mouse and human platelets requires p38 MAP kinase signaling. Protein kinase C, extracellular regulated-signal kinase MAPK, and caspases were not involved in TACE activation. Both inhibition of p38 MAPK and inactivation of TACE during platelet storage led to a markedly improved posttransfusion recovery and hemostatic function of platelets in mice. p38 MAPK inhibitors had only minor effects on the aggregation of fresh platelets under static or flow conditions in vitro. In summary, our data suggest that inhibition of p38 MAPK or TACE during storage may significantly improve the quality of stored platelets.


Assuntos
Plaquetas/enzimologia , Proteínas Quinases p38 Ativadas por Mitógeno/sangue , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/sangue , Proteínas ADAM/deficiência , Proteínas ADAM/genética , Proteína ADAM17 , Animais , Plaquetas/fisiologia , Preservação de Sangue , Ativação Enzimática , Hemostasia/fisiologia , Humanos , Técnicas In Vitro , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Transfusão de Plaquetas , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
9.
Immunol Res ; 65(3): 706-712, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28161762

RESUMO

There is an emerging interest in the diverse functions of neutrophil extracellular traps (NETs) in a variety of disease settings. However, data on circulating NETs rely largely upon surrogate NET markers such as cell-free DNA, nucleosomes, and NET-associated enzymes. Citrullination of histone H3 by peptidyl arginine deiminase 4 (PAD4) is central for NET formation, and citrullinated histone H3 (H3Cit) is considered a NET-specific biomarker. We therefore aimed to optimize and validate a new enzyme-linked immunosorbent assay (ELISA) to quantify the levels of H3Cit in human plasma. A standard curve made of in vitro PAD4-citrullinated histones H3 allows for the quantification of H3Cit in plasma using an anti-histone antibody as capture antibody and an anti-histone H3 citrulline antibody for detection. The assay was evaluated for linearity, stability, specificity, and precision on plasma samples obtained from a human model of inflammation before and after lipopolysaccharide injection. The results revealed linearity and high specificity demonstrated by the inability of detecting non-citrullinated histone H3. Coefficients of variation for intra- and inter-assay variability ranged from 2.1 to 5.1% and from 5.8 to 13.5%, respectively, allowing for a high precision. Furthermore, our results support an inflammatory induction of a systemic NET burden by showing, for the first time, clear intra-individual elevations of plasma H3Cit in a human model of lipopolysaccharide-induced inflammation. Taken together, our work demonstrates the development of a new method for the quantification of H3Cit by ELISA that can reliably be used for the detection of NETs in human plasma.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Armadilhas Extracelulares/metabolismo , Histonas/metabolismo , Inflamação/diagnóstico , Neutrófilos/imunologia , Plasma/metabolismo , Biomarcadores/metabolismo , Citrulinação , Estudos de Viabilidade , Humanos , Lipopolissacarídeos/imunologia , Variações Dependentes do Observador , Proteína-Arginina Desiminase do Tipo 4 , Desiminases de Arginina em Proteínas/metabolismo , Sensibilidade e Especificidade
10.
Exp Transl Stroke Med ; 3: 9, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21914206

RESUMO

BACKGROUND: Platelets play an important role in ischemic stroke. GPIbα is a major platelet receptor that is critical for platelet adhesion to exposed subendothelial matrix components at sites of vascular damage. METHODS: In this study, we used transgenic mice in which the extracellular part of GPIbα is replaced by human interleukin 4-receptor (GPIbα/IL4Rα). We observed normal brain vasculature in these mice. We compared infarct size in GPIbα/IL4Rα and wild-type (WT) mice 23 hours after 1-hour transient middle cerebral artery occlusion (tMCAO). In addition, the functional outcome was evaluated using a modified Bederson score. RESULTS: We found a significantly smaller infarct size in GPIbα/IL4Rα mice compared to WT mice (38.0 ± 6.5 mm3 vs. 74.2 ± 8.6 mm3, p < 0.001). The decrease in infarct size was functionally relevant as indicated by a significantly better functional Bederson score in GPIbα/IL4Rα mice compared to WT animals (1.3 ± 0.4 vs. 2.7 ± 0.3, p < 0.05). CONCLUSIONS: Our data illustrate and further confirm the important role of platelet GPIbα in ischemic stroke, suggesting that targeted inhibition of this receptor may open new avenues in stroke treatment.

11.
Cancer Res ; 71(5): 1540-9, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21212409

RESUMO

Platelets contribute to homeostasis of the tumor vasculature by helping prevent hemorrhage. Thus, we hypothesized that inducing thrombocytopenia would increase tumor vascular leakiness and facilitate the effective delivery of chemotherapeutic agents to tumors. In a mammary carcinoma murine model, platelet depletion induced bleeding specifically at the tumor site, favoring the accumulation of fluorescently labeled microspheres only in the tumor. Moreover, induction of thrombocytopenia in tumor-bearing mice before injection of paclitaxel increased its intratumoral accumulation and reduced growth of both slow- and fast-growing tumors, compared with mice with normal platelet counts that were treated only with paclitaxel. Histologic analysis confirmed the expectation of an increase in tumor apoptosis and a reduction in tumor proliferation in thrombocytopenic mice receiving chemotherapy. No increased toxicity was seen in other organs or blood cells. Taken together, our results indicate that low platelet count selectively induces leakiness of tumor vessels and favors the delivery of chemotherapy to tumor sites, enhancing its tumoricidal effects.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Paclitaxel/farmacologia , Trombocitopenia/complicações , Animais , Antineoplásicos/farmacocinética , Permeabilidade Capilar/efeitos dos fármacos , Carcinoma Pulmonar de Lewis , Feminino , Imuno-Histoquímica , Masculino , Neoplasias Mamárias Experimentais/complicações , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Paclitaxel/farmacocinética , Trombocitopenia/fisiopatologia , Distribuição Tecidual
12.
PLoS One ; 5(10): e13433, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20976179

RESUMO

BACKGROUND: ADAM17/TACE activity is important during embryonic development. We wished to investigate possible roles of this metalloprotease, focusing on vascular development. METHODOLOGY/PRINCIPAL FINDINGS: Mice mutant in the enzymatic activity of ADAM17 were examined at various stages of embryonic development for vascular pattern and integrity using markers for vessel wall cells. We observed hemorrhage and edema starting at embryonic day E14.5 and becoming more severe as development proceeded; prior to embryonic day E14.5, embryos appeared normal. Staining for PECAM-1/CD31 revealed abnormalities in the patterns of branching of the embryonic vasculature at E14.5. CONCLUSIONS/SIGNIFICANCE: These abnormalities preceded association of pericytes or monocyte/macrophage cells with the affected vessels and, therefore, presumably arise from defects in endothelial function consequent upon failure of ADAM17 to cleave one or more substrates involved in vascular development, such as Notch, Delta, VEGFR2 or JAM-A. Our study demonstrates a role for ADAM17 in modulating embryonic vessel development and function.


Assuntos
Proteínas ADAM/fisiologia , Vasos Sanguíneos/embriologia , Desenvolvimento Embrionário , Hemorragia/etiologia , Proteínas ADAM/genética , Proteína ADAM17 , Animais , Sequência de Bases , Padronização Corporal , Primers do DNA , Camundongos , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA