Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
EMBO J ; 37(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29907695

RESUMO

Recent data showed that cancer cells from different tumor subtypes with distinct metastatic potential influence each other's metastatic behavior by exchanging biomolecules through extracellular vesicles (EVs). However, it is debated how small amounts of cargo can mediate this effect, especially in tumors where all cells are from one subtype, and only subtle molecular differences drive metastatic heterogeneity. To study this, we have characterized the content of EVs shed in vivo by two clones of melanoma (B16) tumors with distinct metastatic potential. Using the Cre-LoxP system and intravital microscopy, we show that cells from these distinct clones phenocopy their migratory behavior through EV exchange. By tandem mass spectrometry and RNA sequencing, we show that EVs shed by these clones into the tumor microenvironment contain thousands of different proteins and RNAs, and many of these biomolecules are from interconnected signaling networks involved in cellular processes such as migration. Thus, EVs contain numerous proteins and RNAs and act on recipient cells by invoking a multi-faceted biological response including cell migration.


Assuntos
Movimento Celular/fisiologia , Vesículas Extracelulares/metabolismo , Melanoma Experimental/patologia , Animais , Linhagem Celular Tumoral , Camundongos , Metástase Neoplásica/patologia , RNA Mensageiro/genética , Transdução de Sinais/fisiologia , Microambiente Tumoral/fisiologia
2.
Int J Cancer ; 146(7): 1979-1992, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31411736

RESUMO

Removal of colorectal adenomas is an effective strategy to reduce colorectal cancer (CRC) mortality rates. However, as only a minority of adenomas progress to cancer, such strategies may lead to overtreatment. The present study aimed to characterize adenomas by in-depth molecular profiling, to obtain insights into altered biology associated with the colorectal adenoma-to-carcinoma progression. We obtained low-coverage whole genome sequencing, RNA sequencing and tandem mass spectrometry data for 30 CRCs, 30 adenomas and 18 normal adjacent colon samples. These data were used for DNA copy number aberrations profiling, differential expression, gene set enrichment and gene-dosage effect analysis. Protein expression was independently validated by immunohistochemistry on tissue microarrays and in patient-derived colorectal adenoma organoids. Stroma percentage was determined by digital image analysis of tissue sections. Twenty-four out of 30 adenomas could be unambiguously classified as high risk (n = 9) or low risk (n = 15) of progressing to cancer, based on DNA copy number profiles. Biological processes more prevalent in high-risk than low-risk adenomas were related to proliferation, tumor microenvironment and Notch, Wnt, PI3K/AKT/mTOR and Hedgehog signaling, while metabolic processes and protein secretion were enriched in low-risk adenomas. DNA copy number driven gene-dosage effect in high-risk adenomas and cancers was observed for POFUT1, RPRD1B and EIF6. Increased POFUT1 expression in high-risk adenomas was validated in tissue samples and organoids. High POFUT1 expression was also associated with Notch signaling enrichment and with decreased goblet cells differentiation. In-depth molecular characterization of colorectal adenomas revealed POFUT1 and Notch signaling as potential drivers of tumor progression.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Fucosiltransferases/genética , Proteínas Oncogênicas/genética , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Biomarcadores Tumorais , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patologia , Neoplasias Colorretais/metabolismo , Progressão da Doença , Fucosiltransferases/metabolismo , Humanos , Proteínas Oncogênicas/metabolismo , Reprodutibilidade dos Testes , Microambiente Tumoral
3.
Oncologist ; 25(4): e634-e643, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31943574

RESUMO

BACKGROUND: Minimally invasive diagnostic biomarkers for patients with pancreatic ductal adenocarcinoma (PDAC) and distal cholangiocarcinoma (dCCA) are warranted to facilitate accurate diagnosis. This study identified diagnostic plasma proteins based on proteomics of tumor secretome. MATERIALS AND METHODS: Secretome of tumor and normal tissue was collected after resection of PDAC and dCCA. Differentially expressed proteins were measured by mass spectrometry. Selected candidate biomarkers and carbohydrate antigen 19-9 (CA19-9) were validated by enzyme-linked immunosorbent assay in plasma from patients with PDAC (n = 82), dCCA (n = 29), benign disease (BD; n = 30), and healthy donors (HDs; n = 50). Areas under the curve (AUCs) of receiver operator characteristic curves were calculated to determine the discriminative power. RESULTS: In tumor secretome, 696 discriminatory proteins were identified, including 21 candidate biomarkers. Thrombospondin-2 (THBS2) emerged as promising biomarker. Abundance of THBS2 in plasma from patients with cancer was significantly higher compared to HDs (p < .001, AUC = 0.844). Combined expression of THBS2 and CA19-9 yielded the optimal discriminatory capacity (AUC = 0.952), similarly for early- and late-stage disease (AUC = 0.971 and AUC = 0.911). Remarkably, this combination demonstrated a power similar to CA19-9 to discriminate cancer from BD (AUC = 0.764), and THBS2 provided an additive value in patients with high expression levels of bilirubin. CONCLUSION: Our proteome approach identified a promising set of candidate biomarkers. The combined plasma expression of THBS2/CA19-9 is able to accurately distinguish patients with PDAC or dCCA from HD and BD. IMPLICATIONS FOR PRACTICE: The combined plasma expression of thrombospondin-2 and carbohydrate antigen 19-9 is able to accurately diagnose patients with pancreatic cancer and distal cholangiocarcinoma. This will facilitate minimally invasive diagnosis for these patients by distinguishing them from healthy individuals and benign diseases.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias Pancreáticas , Neoplasias dos Ductos Biliares/diagnóstico , Ductos Biliares Intra-Hepáticos , Biomarcadores Tumorais , Antígeno CA-19-9 , Colangiocarcinoma/diagnóstico , Humanos , Neoplasias Pancreáticas/diagnóstico , Proteoma , Trombospondinas
4.
Mol Cell Proteomics ; 16(10): 1850-1863, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28747380

RESUMO

Proteogenomics, i.e. comprehensive integration of genomics and proteomics data, is a powerful approach identifying novel protein biomarkers. This is especially the case for proteins that differ structurally between disease and control conditions. As tumor development is associated with aberrant splicing, we focus on this rich source of cancer specific biomarkers. To this end, we developed a proteogenomic pipeline, Splicify, which can detect differentially expressed protein isoforms. Splicify is based on integrating RNA massive parallel sequencing data and tandem mass spectrometry proteomics data to identify protein isoforms resulting from differential splicing between two conditions. Proof of concept was obtained by applying Splicify to RNA sequencing and mass spectrometry data obtained from colorectal cancer cell line SW480, before and after siRNA-mediated downmodulation of the splicing factors SF3B1 and SRSF1. These analyses revealed 2172 and 149 differentially expressed isoforms, respectively, with peptide confirmation upon knock-down of SF3B1 and SRSF1 compared with their controls. Splice variants identified included RAC1, OSBPL3, MKI67, and SYK. One additional sample was analyzed by PacBio Iso-Seq full-length transcript sequencing after SF3B1 downmodulation. This analysis verified the alternative splicing identified by Splicify and in addition identified novel splicing events that were not represented in the human reference genome annotation. Therefore, Splicify offers a validated proteogenomic data analysis pipeline for identification of disease specific protein biomarkers resulting from mRNA alternative splicing. Splicify is publicly available on GitHub (https://github.com/NKI-TGO/SPLICIFY) and suitable to address basic research questions using pre-clinical model systems as well as translational research questions using patient-derived samples, e.g. allowing to identify clinically relevant biomarkers.


Assuntos
Processamento Alternativo , Biomarcadores Tumorais/análise , Proteogenômica/métodos , Proteoma/análise , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Conformação Proteica , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Proteoma/genética , Splicing de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Análise de Sequência de RNA , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo
5.
Cancer Cell ; 41(6): 1170-1185.e12, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37311414

RESUMO

Although treatment with taxanes does not always lead to clinical benefit, all patients are at risk of their detrimental side effects such as peripheral neuropathy. Understanding the in vivo mode of action of taxanes can help design improved treatment regimens. Here, we demonstrate that in vivo, taxanes directly trigger T cells to selectively kill cancer cells in a non-canonical, T cell receptor-independent manner. Mechanistically, taxanes induce T cells to release cytotoxic extracellular vesicles, which lead to apoptosis specifically in tumor cells while leaving healthy epithelial cells intact. We exploit these findings to develop an effective therapeutic approach, based on transfer of T cells pre-treated with taxanes ex vivo, thereby avoiding toxicity of systemic treatment. Our study reveals a different in vivo mode of action of one of the most commonly used chemotherapies, and opens avenues to harness T cell-dependent anti-tumor effects of taxanes while avoiding systemic toxicity.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Linfócitos T , Taxoides/farmacologia , Apoptose , Células Epiteliais , Neoplasias/tratamento farmacológico
6.
J Proteomics ; 232: 104076, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33307249

RESUMO

Cancer cells secrete extracellular vesicles (EVs) that contain molecular information, including proteins and RNA. Oncogenic signalling can be transferred via the cargo of EVs to recipient cells and may influence the behaviour of neighbouring cells or cells at a distance. This cargo may contain cancer drivers, such as EGFR, and also phosphorylated (activated) components of oncogenic signalling cascades. Till date, the cancer EV phosphoproteome has not been studied in great detail. In the present study, we used U87 and U87EGFRvIII cells as a model to explore EV oncogenic signalling components in comparison to the cellular profile. EVs were isolated using the VN96 ME-kit and subjected to LC-MS/MS based phosphoproteomics and dedicated bioinformatics. Expression of (phosphorylated)-EGFR was highly increased in EGFRvIII overexpressing cells and their secreted EVs. The increased phosphorylated proteins in both cells and EVs were associated with activated components of the EGFR-signalling cascade and included EGFR, AKT2, MAPK8, SMG1, MAP3K7, DYRK1A, RPS6KA3 and PAK4 kinases. In conclusion, EVs harbour oncogenic signalling networks including multiple activated kinases including EGFR, AKT and mTOR. SIGNIFICANCE: Extracellular vesicles (EVs) are biomarker treasure troves and are widely studied for their biomarker content in cancer. However, little research has been done on the phosphorylated protein profile within cancer EVs. In the current study, we demonstrate that EVs that are secreted by U87-EGFRvIII mutant glioblastoma cells contain high levels of oncogenic signalling networks. These networks contain multiple activated (phosphorylated) kinases, including EGFR, MAPK, AKT and mTOR.


Assuntos
Vesículas Extracelulares , Glioblastoma , Cromatografia Líquida , Receptores ErbB , Estudos de Viabilidade , Humanos , Espectrometria de Massas em Tandem , Quinases Ativadas por p21
7.
J Proteomics ; 238: 104134, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33561558

RESUMO

Mass-spectrometry (MS) based phosphoproteomics is increasingly used to explore aberrant cellular signaling and kinase driver activity, aiming to improve kinase inhibitor (KI) treatment selection in malignancies. Phosphorylation is a dynamic, highly regulated post-translational modification that may be affected by variation in pre-analytical sample handling, hampering the translational value of phosphoproteomics-based analyses. Here, we investigate the effect of delay in mononuclear cell isolation on acute myeloid leukemia (AML) phosphorylation profiles. We performed MS on immuno-precipitated phosphotyrosine (pY)-containing peptides isolated from AML samples after seven pre-defined delays before sample processing (direct processing, thirty minutes, one hour, two hours, three hours, four hours and 24 h delay). Up to four hours, pY phosphoproteomics profiles show limited variation. However, in samples processed with a delay of 24 h, we observed significant change in these phosphorylation profiles, with differential phosphorylation of 22 pY phosphopeptides (p < 0.01). This includes increased phosphorylation of pY phosphopeptides of JNK and p38 kinases indicative of stress response activation. Based on these results, we conclude that processing of AML samples should be standardized at all times and should occur within four hours after sample collection. SIGNIFICANCE: Our study provides a practical time-frame in which fresh peripheral blood samples from acute myeloid patients should be processed for phosphoproteomics, in order to warrant correct interpretation of in vivo biology. We show that up to four hours of delayed processing after sample collection, pY phosphoproteomic profiles remain stable. Extended delays are associated with perturbation of phosphorylation profiles. After a delay of 24 h, JNK activation loop phosphorylation is markedly increased and may serve as a biomarker for delayed processing. These findings are relevant for biomedical acute myeloid leukemia research, as phosphoproteomic techniques are of particular interest to investigate aberrant kinase signaling in relation to disease emergence and kinase inhibitor response. With these data, we aim to contribute to reproducible research with meaningful outcomes.


Assuntos
Leucemia Mieloide Aguda , Separação Celular , Humanos , Fosforilação , Fosfotirosina/metabolismo , Proteômica
8.
Front Cardiovasc Med ; 8: 612215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732734

RESUMO

Background: Sex-differences in clinical presentation contribute to the phenotypic heterogeneity of hypertrophic cardiomyopathy (HCM) patients. While disease prevalence is higher in men, women present with more severe diastolic dysfunction and worse survival. Until today, little is known about the cellular differences underlying sex-differences in clinical presentation. Methods: To define sex-differences at the protein level, we performed a proteomic analysis in cardiac tissue obtained during myectomy surgery to relieve left ventricular outflow tract obstruction of age-matched female and male HCM patients harboring a sarcomere mutation (n = 13 in both groups). Furthermore, these samples were compared to 8 non-failing controls. Women presented with more severe diastolic dysfunction. Results: Out of 2099 quantified proteins, direct comparison of male, and female HCM samples revealed only 46 significantly differentially expressed proteins. Increased levels of tubulin and heat shock proteins were observed in female compared to male HCM patients. Western blot analyses confirmed higher levels of tubulin in female HCM samples. In addition, proteins involved in carbohydrate metabolism were significantly lower in female compared to male samples. Furthermore, we found lower levels of translational proteins specifically in male HCM samples. The disease-specificity of these changes were confirmed by a second analysis in which we compared female and male samples separately to non-failing control samples. Transcription factor analysis showed that sex hormone-dependent transcription factors may contribute to differential protein expression, but do not explain the majority of protein changes observed between male and female HCM samples. Conclusion: In conclusion, based on our proteomics analyses we propose that increased levels of tubulin partly underlie more severe diastolic dysfunction in women compared to men. Since heat shock proteins have cardioprotective effects, elevated levels of heat shock proteins in females may contribute to later disease onset in woman, while reduced protein turnover in men may lead to the accumulation of damaged proteins which in turn affects proper cellular function.

9.
Circ Heart Fail ; 14(1): e007022, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33430602

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease. While ≈50% of patients with HCM carry a sarcomere gene mutation (sarcomere mutation-positive, HCMSMP), the genetic background is unknown in the other half of the patients (sarcomere mutation-negative, HCMSMN). Genotype-specific differences have been reported in cardiac function. Moreover, HCMSMN patients have later disease onset and a better prognosis than HCMSMP patients. To define if genotype-specific derailments at the protein level may explain the heterogeneity in disease development, we performed a proteomic analysis in cardiac tissue from a clinically well-phenotyped HCM patient group. METHODS: A proteomics screen was performed in cardiac tissue from 39 HCMSMP patients, 11HCMSMN patients, and 8 nonfailing controls. Patients with HCM had obstructive cardiomyopathy with left ventricular outflow tract obstruction and diastolic dysfunction. A novel MYBPC32373insG mouse model was used to confirm functional relevance of our proteomic findings. RESULTS: In all HCM patient samples, we found lower levels of metabolic pathway proteins and higher levels of extracellular matrix proteins. Levels of total and detyrosinated α-tubulin were markedly higher in HCMSMP than in HCMSMN and controls. Higher tubulin detyrosination was also found in 2 unrelated MYBPC3 mouse models and its inhibition with parthenolide normalized contraction and relaxation time of isolated cardiomyocytes. CONCLUSIONS: Our findings indicate that microtubules and especially its detyrosination contribute to the pathomechanism of patients with HCMSMP. This is of clinical importance since it represents a potential treatment target to improve cardiac function in patients with HCMSMP, whereas a beneficial effect may be limited in patients with HCMSMN.


Assuntos
Cardiomiopatia Hipertrófica/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo , Obstrução do Fluxo Ventricular Externo/metabolismo , Adulto , Idoso , Animais , Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Proteínas de Transporte/genética , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Haploinsuficiência , Humanos , Masculino , Pessoa de Meia-Idade , Cadeias Pesadas de Miosina/genética , Proteômica , Sarcômeros/genética , Troponina I/genética , Troponina T/genética , Obstrução do Fluxo Ventricular Externo/genética , Obstrução do Fluxo Ventricular Externo/fisiopatologia , Septo Interventricular/metabolismo
10.
Sci Rep ; 11(1): 2972, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536523

RESUMO

Despite our expanding knowledge about the mechanism underlying atrial fibrillation (AF), the interplay between the biological events underlying AF remains incompletely understood. This study aimed to identify the functionally enriched gene-sets in AF and capture their interconnection via pivotal factors, that may drive or be driven by AF. Global abundance of the proteins in the left atrium of AF patients compared to control patients (n = 3/group), and the functionally enriched biological processes in AF were determined by mass-spectrometry and gene set enrichment analysis, respectively. The data were validated in an independent cohort (n = 19-20/group). In AF, the gene-sets of innate immune system, metabolic process, cellular component disassembly and ion homeostasis were up-regulated, while the gene-set of ciliogenesis was down-regulated. The innate immune system was over-represented by neutrophil degranulation, the components of which were extensively shared by other gene-sets altered in AF. In the independent cohort, an activated form of neutrophils was more present in the left atrium of AF patients with the increased gene expression of neutrophil granules. MYH10, required for ciliogenesis, was decreased in the atrial fibroblasts of AF patients. We report the increased neutrophil degranulation appears to play a pivotal role, and affects multiple biological processes altered in AF.


Assuntos
Fibrilação Atrial/imunologia , Degranulação Celular/imunologia , Ativação de Neutrófilo , Neutrófilos/imunologia , Fibrilação Atrial/patologia , Fibrilação Atrial/cirurgia , Estudos de Casos e Controles , Ablação por Cateter , Fibroblastos/metabolismo , Átrios do Coração/imunologia , Átrios do Coração/patologia , Humanos , Masculino , Cadeias Pesadas de Miosina/metabolismo , Neutrófilos/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Proteômica
11.
Cell Stem Cell ; 26(4): 569-578.e7, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32169167

RESUMO

Colorectal cancer stem cells (CSCs) express Lgr5 and display extensive stem cell-like multipotency and self-renewal and are thought to seed metastatic disease. Here, we used a mouse model of colorectal cancer (CRC) and human tumor xenografts to investigate the cell of origin of metastases. We found that most disseminated CRC cells in circulation were Lgr5- and formed distant metastases in which Lgr5+ CSCs appeared. This plasticity occurred independently of stemness-inducing microenvironmental factors and was indispensable for outgrowth, but not establishment, of metastases. Together, these findings show that most colorectal cancer metastases are seeded by Lgr5- cells, which display intrinsic capacity to become CSCs in a niche-independent manner and can restore epithelial hierarchies in metastatic tumors.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Biomarcadores Tumorais , Humanos , Células-Tronco Neoplásicas , Receptores Acoplados a Proteínas G
12.
Genomics Proteomics Bioinformatics ; 18(2): 104-119, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32795611

RESUMO

To address the increasing need for detecting and validating protein biomarkers in clinical specimens, mass spectrometry (MS)-based targeted proteomic techniques, including the selected reaction monitoring (SRM), parallel reaction monitoring (PRM), and massively parallel data-independent acquisition (DIA), have been developed. For optimal performance, they require the fragment ion spectra of targeted peptides as prior knowledge. In this report, we describe a MS pipeline and spectral resource to support targeted proteomics studies for human tissue samples. To build the spectral resource, we integrated common open-source MS computational tools to assemble a freely accessible computational workflow based on Docker. We then applied the workflow to generate DPHL, a comprehensive DIA pan-human library, from 1096 data-dependent acquisition (DDA) MS raw files for 16 types of cancer samples. This extensive spectral resource was then applied to a proteomic study of 17 prostate cancer (PCa) patients. Thereafter, PRM validation was applied to a larger study of 57 PCa patients and the differential expression of three proteins in prostate tumor was validated. As a second application, the DPHL spectral resource was applied to a study consisting of plasma samples from 19 diffuse large B cell lymphoma (DLBCL) patients and 18 healthy control subjects. Differentially expressed proteins between DLBCL patients and healthy control subjects were detected by DIA-MS and confirmed by PRM. These data demonstrate that the DPHL supports DIA and PRM MS pipelines for robust protein biomarker discovery. DPHL is freely accessible at https://www.iprox.org/page/project.html?id=IPX0001400000.


Assuntos
Biomarcadores Tumorais/análise , Espectrometria de Massas , Biomarcadores Tumorais/sangue , Linhagem Celular Tumoral , Humanos , Linfoma Difuso de Grandes Células B/sangue , Masculino , Proteínas de Neoplasias/análise , Peptídeos/metabolismo , Neoplasias da Próstata/metabolismo , Proteômica , Reprodutibilidade dos Testes
13.
Cell Rep ; 29(9): 2565-2569.e3, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31775027

RESUMO

Epithelial-to-mesenchymal transition (EMT) has long been thought to be crucial for metastasis. Recently a study challenged this idea by demonstrating that metastases were seeded by tumor cells that were not marked by an EMT lineage-tracing reporter on the basis of the expression of the mesenchymal marker fsp1. However, the results of this study and their interpretation are under debate. Here, we combine the lineage-tracing reporter with our real-time EMT-state reporter and show that the fsp1-based EMT lineage-tracing reporter does not mark all disseminating mesenchymal cells with metastatic potential. Our findings demonstrate that fsp1-mediated lineage tracing does not allow any conclusions about the requirement of EMT for metastasis. Instead our data are fully consistent with previous reports that EMT is not a binary phenomenon but rather a spectrum of cellular states.


Assuntos
Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/imunologia , Humanos
14.
Cells ; 8(9)2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546954

RESUMO

Most patients with advanced colorectal cancer (CRC) eventually develop resistance to systemic combination therapy. miR-195-5p and miR-497-5p are downregulated in CRC tissues and associated with drug resistance. Sensitization to 5-FU, oxaliplatin, and irinotecan by transfection with miR-195-5p and miR-497-5p mimics was studied using cell viability and clonogenic assays in cell lines HCT116, RKO, DLD-1, and SW480. In addition, proteomic analysis of transfected cells was implemented to identify potential targets. Significantly altered proteins were subjected to STRING (protein-protein interaction networks) database analysis to study the potential mechanisms of drug resistance. Cell viability analysis of transfected cells revealed increased sensitivity to oxaliplatin in microsatellite instable (MSI)/P53 wild-type HCT116 and RKO cells. HCT116 transfected cells formed significantly fewer colonies when treated with oxaliplatin. In sensitized cells, proteomic analysis showed 158 and 202 proteins with significantly altered expression after transfection with miR-195-5p and miR-497-5p mimics respectively, of which CHUK and LUZP1 proved to be coinciding downregulated proteins. Resistance mechanisms of these proteins may be associated with nuclear factor kappa-B signaling and G1 cell-cycle arrest. In conclusion, miR-195-5p and miR-497-5p replacement enhanced sensitivity to oxaliplatin in treatment naïve MSI/P53 wild-type CRC cells. Proteomic analysis revealed potential miRNA targets associated with the cell-cycle which possibly bare a relation with chemotherapy sensitivity.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , MicroRNAs/análise , Instabilidade de Microssatélites/efeitos dos fármacos , Oxaliplatina/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Células HCT116 , Humanos , MicroRNAs/genética , Proteômica , RNA Mensageiro/análise , RNA Mensageiro/genética , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo
15.
J Proteomics ; 192: 27-36, 2019 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-30071318

RESUMO

Nephronophthisis is one of the leading genetic causes of end-stage renal disease in childhood. Early diagnostics and prognostics for nephronophthisis are currently limited. We aimed to identify non-invasive protein biomarkers for nephronophthisis in urinary extracellular vesicles. Extracellular vesicles were isolated from urine of 12 patients with a nephronophthisis-related ciliopathy and 12 age- and gender-matched controls, followed by in-depth label-free LC-MS/MS proteomics analysis of gel fractionated extracellular vesicle proteins. Supervised cluster analysis of proteomic profiles separated patients from controls. We identified 156 differentially expressed proteins with fold change ≥4 in patients compared to controls (P < .05). Importantly, expression levels of discriminating proteins were correlated with chronic kidney disease stage, suggesting possible applications for urinary extracellular vesicle biomarkers in prognostics for nephronophthisis. Enrichment analysis of gene ontology terms revealed GO terms including signaling, actin cytoskeleton and endocytosis among the downregulated proteins in patients, whereas terms related to response to wounding and extracellular matrix organization were enriched among upregulated proteins. Our findings represent the first step towards a non-invasive diagnostic test for nephronophthisis. Further research is needed to determine specificity of the candidate biomarkers. In conclusion, proteomic profiles of urinary extracellular vesicles differentiate nephronophthisis-related ciliopathy patients from healthy controls. SIGNIFICANCE: Nephronophthisis is an important cause of end-stage renal disease in children and is associated with an average diagnostic delay of 3.5 years. This is the first study investigating candidate biomarkers for nephronophthisis using global proteomics analysis of urinary extracellular vesicles in patients with nephronophthisis compared to control individuals. We show that measuring protein markers in urinary extracellular vesicles is a promising approach for non-invasive early diagnostics of nephronophthisis.


Assuntos
Ciliopatias/urina , Vesículas Extracelulares/metabolismo , Doenças Renais Císticas/urina , Falência Renal Crônica/urina , Proteoma/metabolismo , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino
16.
J Extracell Vesicles ; 6(1): 1313091, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28717416

RESUMO

Extracellular vesicles (EVs) secreted by prostate cancer (PCa) cells contain specific biomarkers and can be isolated from urine. Collection of urine is not invasive, and therefore urinary EVs represent a liquid biopsy for diagnostic and prognostic testing for PCa. In this study, we optimised urinary EV isolation using a method based on heat shock proteins and compared it to gold-standard ultracentrifugation. The urinary EV isolation protocol using the Vn96-peptide is easier, time convenient (≈1.5 h) and no special equipment is needed, in contrast to ultracentrifugation protocol (>3.5 h), making this protocol clinically feasible. We compared the isolated vesicles of both ultracentrifugation and Vn96-peptide by proteome profiling using mass spectrometry-based proteomics (n = 4 per method). We reached a depth of >3000 proteins, with 2400 proteins that were commonly detected in urinary EVs from different donors. We show a large overlap (>85%) between proteins identified in EVs isolated by ultracentrifugation and Vn96-peptide. Addition of the detergent NP40 to Vn96-peptide EV isolations reduced levels of background proteins and highly increased the levels of the EV-markers TSG101 and PDCD6IP, indicative of an increased EV yield. Thus, the Vn96-peptide-based EV isolation procedure is clinically feasibly and allows large-scale protein profiling of urinary EV biomarkers.

17.
EuPA Open Proteom ; 11: 11-15, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29900106

RESUMO

Extracellular vesicles (EVs) are cell-secreted membrane vesicles enclosed by a lipid bilayer derived from endosomes or from the plasma membrane. Since EVs are released into body fluids, and their cargo includes tissue-specific and disease-related molecules, they represent a rich source for disease biomarkers. However, standard ultracentrifugation methods for EV isolation are laborious, time-consuming, and require high inputs. Ghosh and co-workers recently described an isolation method utilizing Heat Shock Protein (HSP)-binding peptide Vn96 to aggregate HSP-decorated EVs, which can be performed at small 'miniprep' scale. Based on microscopic, immunoblot, and RNA sequencing analyses this method compared well with ultracentrifugation-mediated EV isolation, but a detailed proteomic comparison was lacking. Therefore, we compared both methods using label-free proteomics of replicate EV isolations from HT-29 cell-conditioned medium. Despite a 30-fold different scale (ultracentrifugation: 60 ml/Vn96-mediated aggregation: 2 ml) both methods yielded comparable numbers of identified proteins (3115/3085), with similar reproducibility of identification (72.5%/75.5%) and spectral count-based quantification (average CV: 31%/27%). EV fractions obtained with either method contained established EV markers and proteins linked to vesicle-related gene ontologies. Thus, Vn96 peptide-mediated aggregation is an advantageous, simple and rapid approach for EV isolation from small biological samples, enabling high-throughput analysis in a biomarker discovery setting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA