Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Opt Express ; 31(9): 13566-13575, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157241

RESUMO

Nanofiber Bragg cavities (NFBCs) are solid-state microcavities fabricated in optical tapered fiber. They can be tuned to a resonance wavelength of more than 20 nm by applying mechanical tension. This property is important for matching the resonance wavelength of an NFBC with the emission wavelength of single-photon emitters. However, the mechanism of the ultra-wide tunability and the limitation of the tuning range have not yet been clarified. It is important to comprehensively analyze both the deformation of the cavity structure in an NFBC and the change in the optical properties due to the deformation. Here, we present an analysis of the ultra-wide tunability of an NFBC and the limitation of the tuning range using three dimensional (3D) finite element method (FEM) and 3D finite-difference time-domain (FDTD) optical simulations. When we applied a tensile force of 200 µN to the NFBC, a stress of 5.18 GPa was concentrated at the groove in the grating. The grating period was extended from 300 to 313.2 nm, while the diameter slightly shrank from 300 to 297.1 nm in the direction of the grooves and from 300 to 298 nm in the direction orthogonal to the grooves. This deformation shifted the resonance peak by 21.5 nm. These simulations indicated that both the elongation of the grating period and the small shrinkage of the diameter contributed to the ultra-wide tunability of the NFBC. We also calculated the dependence of the stress at the groove, the resonance wavelength, and the quality Q factor while changing the total elongation of the NFBC. The dependence of the stress on the elongation was 1.68 × 10-2 GPa/µm. The dependence of the resonance wavelength was 0.07 nm/µm, which almost agrees with the experimental result. When the NFBC, assumed to have the total length of 32 mm, was stretched by 380 µm with the tensile force of 250 µN, the Q factor for the polarization mode parallel to the groove changed from 535 to 443, which corresponded to a change in Purcell factor from 5.3 to 4.9. This slight reduction seems acceptable for the application as single photon sources. Furthermore, assuming a rupture strain of the nanofiber of 10 GPa, it was estimated that the resonance peak could be shifted by up to about 42 nm.

2.
Opt Express ; 27(5): 6792-6800, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30876257

RESUMO

Nanofiber Bragg cavities (NFBCs) are solid-state microcavities fabricated in an optical tapered fiber. NFBCs are promising candidates as a platform for photonic quantum information devices due to their small mode volume, ultra-high coupling efficiencies, and ultra-wide tunability. However, the quality (Q) factor has been limited to be approximately 250, which may be due to limitations in the fabrication process. Here we report high Q NFBCs fabricated using a focused helium ion beam. Whenan NFBC with grooves of 640 periods is fabricated, the Q factor is over 4170, which is more than 16 times larger than that previously fabricated using a focused gallium ion beam.

3.
Phys Rev Lett ; 122(22): 223602, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31283263

RESUMO

We use an optimal control protocol to cool one mode of the center-of-mass motion of an optically levitated nanoparticle. The feedback technique relies on exerting a Coulomb force on a charged particle with a pair of electrodes and follows the control law of a linear quadratic regulator, whose gains are optimized by a machine learning algorithm in under 5 s. With a simpler and more robust setup than optical feedback schemes, we achieve a minimum center-of-mass temperature of 5 mK at 3×10^{-7} mbar and transients 10-600 times faster than cold damping. This cooling technique can be easily extended to 3D cooling and is particularly relevant for studies demanding high repetition rates and force sensing experiments with levitated objects.

4.
Nano Lett ; 18(6): 3956-3961, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29772171

RESUMO

Levitation optomechanics exploits the unique mechanical properties of trapped nano-objects in vacuum to address some of the limitations of clamped nanomechanical resonators. In particular, its performance is foreseen to contribute to a better understanding of quantum decoherence at the mesoscopic scale as well as to lead to novel ultrasensitive sensing schemes. While most efforts have focused so far on the optical trapping of low-absorption silica particles, further opportunities arise from levitating objects with internal degrees of freedom, such as color centers. Nevertheless, inefficient heat dissipation at low pressures poses a challenge because most nano-objects, even with low-absorption materials, experience photodamage in an optical trap. Here, by using a Paul trap, we demonstrate levitation in vacuum and center-of-mass feedback cooling of a nanodiamond hosting a single nitrogen-vacancy center. The achieved level of motion control enables us to optically interrogate and characterize the emitter response. The developed platform is applicable to a wide range of other nano-objects and represents a promising step toward coupling internal and external degrees of freedom.

5.
Opt Express ; 25(20): 23545-23555, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-29041306

RESUMO

Two-qubit quantum codes have been suggested to obtain better efficiency and higher loss tolerance in quantum key distribution. Here, we propose a two-qubit quantum key distribution protocol based on a mixed basis consisting of two Bell states and two states from the computational basis. All states can be generated from a single entangled photon pair resource by using local operations on only one auxiliary photon. Compared to other schemes it is also possible to deterministically discriminate all states using linear optics. Additionally, our protocol can be implemented with today's technology. When discussing the security of our protocol we find a much improved resistance against certain attacks as compared to the standard BB84 protocol.

6.
Opt Express ; 24(13): 15050-8, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27410656

RESUMO

Coupling of a single dipole with a nanofiber Bragg cavity (NFBC) approximating an actually fabricated structure was numerically analyzed using three dimensional finite-difference time-domain simulations for different dipole positions. For the given model structure, the Purcell factor and coupling efficiency reached to 19.1 and 82%, respectively, when the dipole is placed outside the surface of the fiber. Interestingly, these values are very close to the highest values of 20.2 and 84% obtained for the case when the dipole was located inside the fiber at the center. The analysis performed in this study will be useful in improving the performance of single-photon emitter-related quantum devices using NFBCs.

7.
Nanotechnology ; 27(45): 455202, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27713185

RESUMO

We report on the coupling of single nitrogen vacancy (NV) centers to ultrathin fiber-taper nanofibers by the manipulation of single diamond nanocrystals on the nanofibers under real-time observation of nanodiamond fluorescence. Spin-dependent fluorescence of the single NV centers is efficiently detected through the nanofiber. We show control of the spin sub-level structure of the electronic ground state using an external magnetic field and clearly observe a frequency fine tuning of [Formula: see text]. This observation demonstrates a possibility of realizing fiber-integrated quantum λ-systems, which can be used for various quantum information devices including push-pull quantum memory and quantum gates.

8.
Nano Lett ; 15(5): 3024-9, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25816112

RESUMO

Finding new solid state defect centers in novel host materials is crucial for realizing integrated hybrid quantum photonic devices. We present a preparation method for defect centers with photostable bright single photon emission in zinc oxide, a material with promising properties in terms of processability, availability, and applications. A detailed optical study reveals a complex dynamic of intensity fluctuations at room temperature. Measurements at cryogenic temperatures show very sharp (<60 GHz) zero phonon lines (ZPLs) at 580 nm to  620 nm (≈ 2.0 eV) with frozen out fast fluctuations. Remaining discrete jumps of the ZPL, which depend on the excitation power, are observed. The low temperature results will narrow down speculations on the origin of visible-near-infrared (NIR) wavelength defect emission in zinc oxide and provide a basis for improved theoretical models.

9.
Opt Express ; 23(8): 9803-11, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25969021

RESUMO

We report on an experimental and theoretical investigation of an integrated Bragg-like grating coupler for near-vertical scattering of light from photonic crystal waveguides with an ultra-small footprint of a few lattice constants only. Using frequency-resolved measurements, we find the directional properties of the scattered radiation and prove that the coupler shows a good performance over the complete photonic bandgap. The results compare well to analytical considerations regarding 1d-scattering phenomena as well as to FDTD simulations.

10.
Nano Lett ; 14(5): 2623-7, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24694035

RESUMO

Their intrinsic properties render single quantum systems as ideal tools for quantum enhanced sensing and microscopy. As an additional benefit, their size is typically on an atomic scale that enables sensing with very high spatial resolution. Here, we report on utilizing a single nitrogen vacancy center in nanodiamond for performing three-dimensional scanning-probe fluorescence lifetime imaging microscopy. By measuring changes of the single emitter's lifetime, information on the local density of optical states is acquired at the nanoscale. Three-dimensional ab initio discontinuous Galerkin time-domain simulations are used in order to verify the results and to obtain additional insights. This combination of experiment and simulations to gather quantitative information on the local density of optical states is of direct relevance for the understanding of fundamental quantum optical processes as well as for the engineering of novel photonic and plasmonic devices.

11.
Opt Lett ; 39(16): 4639-42, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25121837

RESUMO

We introduce and analyze a design concept based on nonspherical solid immersion lens (SIL) geometry. We find via finite difference time domain (FDTD) simulations that elliptical solid immersion lenses (eSILs) exhibit a notably improved emission directionality compared to the standard SIL design. Large light-collection efficiencies are achieved even for small numerical apertures (NAs). For example, using a NA as low as 0.3, over 65% of the total light emitted by a dipole can be collected.

12.
Phys Rev Lett ; 110(2): 027401, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23383937

RESUMO

Spectral diffusion is the phenomenon of random jumps in the emission wavelength of narrow lines. This phenomenon is a major hurdle for applications of solid state quantum emitters like quantum dots, molecules, or diamond defect centers in an integrated quantum optical technology. Here, we provide further insight into the underlying processes of spectral diffusion of the zero-phonon line of single nitrogen vacancy centers in nano-size diamond by using a novel method based on photon correlation interferometry. The method works although the spectral diffusion rate is several orders of magnitude higher than the photon detection rate and thereby improves the time resolution of previous experiments with nano-size diamond by 6 orders of magnitude. We study the dependency of the spectral diffusion rate on the excitation power, temperature, and excitation wavelength under off-resonant excitation. Our results bring insight into the mechanism of spectral diffusion and suggest a strategy to increase the number of spectrally indistinguishable photons emitted by diamond nanocrystals.

13.
Nanotechnology ; 24(31): 315204, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23857980

RESUMO

In this paper we study thermo-optical effects in gallium phosphite photonic crystal cavities in the visible range. By measuring the shift of narrow resonances, we derive the temperature dependency of the local refractive index of gallium phosphide in an attoliter volume over a temperature range between 5 and 300 K at a wavelength of about 605 nm. Additionally, the potential of photonic crystal cavities for thermo-optical switching of visible light is investigated. As an example we demonstrate thermo-optical switching with 13 dB contrast.

14.
Nano Lett ; 11(1): 198-202, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21138271

RESUMO

An alignment free, micrometer-scale single photon source consisting of a single quantum emitter on an optical fiber operating at room temperature is demonstrated. It easily integrates into fiber optic networks for quantum cryptography or quantum metrology applications.(1) Near-field coupling of a single nitrogen-vacancy center is achieved in a bottom-up approach by placing a preselected nanodiamond directly on the fiber facet. Its high photon collection efficiency is equivalent to a far-field collection via an objective with a numerical aperture of 0.82. Furthermore, simultaneous excitation and re-collection through the fiber is possible by introducing a fiber-connected single emitter sensor.

15.
Sci Rep ; 12(1): 96, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996941

RESUMO

Solid-state quantum emitters coupled with a single mode fibre are of interest for photonic and quantum applications. In this context, nanofibre Bragg cavities (NFBCs), which are microcavities fabricated in an optical nanofibre, are promising devices because they can efficiently couple photons emitted from the quantum emitters to the single mode fibre. Recently, we have realized a hybrid device of an NFBC and a single colloidal CdSe/ZnS quantum dot. However, colloidal quantum dots exhibit inherent photo-bleaching. Thus, it is desired to couple an NFBC with hexagonal boron nitride (hBN) as stable quantum emitters. In this work, we realize a hybrid system of an NFBC and ensemble defect centres in hBN nanoflakes. In this experiment, we fabricate NFBCs with a quality factor of 807 and a resonant wavelength at around 573 nm, which matches well with the fluorescent wavelength of the hBN, using helium-focused ion beam (FIB) system. We also develop a manipulation system to place hBN nanoflakes on a cavity region of the NFBCs and realize a hybrid device with an NFBC. By exciting the nanoflakes via an objective lens and collecting the fluorescence through the NFBC, we observe a sharp emission peak at the resonant wavelength of the NFBC.

16.
ACS Nano ; 16(6): 8677-8683, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35580358

RESUMO

A single levitated nanoparticle is used as a nanoreactor for studying surface chemistry at the nanoscale. Optical levitation under controlled pressure, surrounding gas composition, and humidity provides extreme control over the nanoparticle, including dynamics, charge, and surface chemistry. Using a single nanoparticle avoids ensemble averages and allows studying how the presence of silanol groups at its surface affects the adsorption and desorption of water from the background gas with excellent spatial and temporal resolution. Herein, we demonstrate the potential of this versatile platform by studying the Zhuravlev model in silica particles. In contrast to standard methods, our system allowed the observation of an abrupt and irreversible change in scattering cross section, mass, and mechanical eigenfrequency during the dehydroxylation process, indicating changes in density, refractive index, and volume.

17.
Opt Express ; 19(8): 7914-20, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21503103

RESUMO

We present two applications of a single nitrogen vacancy center in a nanodiamond as quantum probe for plasmonic nanostructures. Coupling to the nanostructures is achieved in a highly controlled manner by picking up a pre-characterized nanocrystal with an atomic force microscope and placing it at the desired position. Local launching of single excitations into a nanowire with a spatial control of few nanometers is demonstrated. Further, a two dimensional map of the electromagnetic environment of a plasmonic bowtie antenna was derived, resembling an ultimate limit of fluorescence lifetime nanoscopy.

18.
Nanotechnology ; 20(42): 425203, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19779233

RESUMO

In this paper we present our approach for engineering gold dipole nanoantennas. Using electron-beam lithography we have been able to produce arrays of single gold antennas with dimensions from 70 to 300 nm total length with a highly reproducible nanoengineering protocol. Characterizing these gold nanoantenna architectures by optical means via dark-field microscopy and scattering spectroscopy gives the linear optical response function as a figure-of-merit for the antenna resonances, spectral linewidth and integrated scattering intensity. We observe an enhanced integrated scattering probability for two arm gold dipole nanoantennas with an antenna feed gap compared to antennas of the size of one arm without a gap.

19.
Sci Rep ; 9(1): 13728, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551434

RESUMO

Hybrid interfaces between distinct quantum systems play a major role in the implementation of quantum networks. Quantum states have to be stored in memories to synchronize the photon arrival times for entanglement swapping by projective measurements in quantum repeaters or for entanglement purification. Here, we analyze the distortion of a single-photon wave packet propagating through a dispersive and absorptive medium with high spectral resolution. Single photons are generated from a single In(Ga)As quantum dot with its excitonic transition precisely set relative to the Cesium D1 transition. The delay of spectral components of the single-photon wave packet with almost Fourier-limited width is investigated in detail with a 200 MHz narrow-band monolithic Fabry-Pérot resonator. Reflecting the excited state hyperfine structure of Cesium, "slow light" and "fast light" behavior is observed. As a step towards room-temperature alkali vapor memories, quantum dot photons are delayed for 5 ns by strong dispersion between the two 1.17 GHz hyperfine-split excited state transitions. Based on optical pumping on the hyperfine-split ground states, we propose a simple, all-optically controllable delay for synchronization of heralded narrow-band photons in a quantum network.

20.
Adv Mater ; 30(14): e1704237, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29473231

RESUMO

Understanding the properties of novel solid-state quantum emitters is pivotal for a variety of applications in research fields ranging from quantum optics to biology. Recently discovered defects in hexagonal boron nitride are especially interesting, as they offer much desired characteristics such as narrow emission lines and photostability. Here, the dependence of the emission on the excitation wavelength is studied. It is found that, in order to achieve bright single-photon emission with high quantum efficiency, the excitation wavelength has to be matched to the emitter. This is a strong indication that the emitters possess a complex level scheme and cannot be described by a simple two or three-level system. Using this excitation dependence of the emission, further insight to the internal level scheme is gained and it is demonstrated how to distinguish different emitters both spatially as well as in terms of their photon correlations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA