Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Plant J ; 94(2): 340-351, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29418030

RESUMO

Pectins are the most complex polysaccharides of the plant cell wall. Based on the number of methylations, acetylations and glycosidic linkages present in their structures, it is estimated that up to 67 transferase activities are involved in pectin biosynthesis. Pectic galactans constitute a major part of pectin in the form of side-chains of rhamnogalacturonan-I. In Arabidopsis, galactan synthase 1 (GALS1) catalyzes the addition of galactose units from UDP-Gal to growing ß-1,4-galactan chains. However, the mechanisms for obtaining varying degrees of polymerization remain poorly understood. In this study, we show that AtGALS1 is bifunctional, catalyzing both the transfer of galactose from UDP-α-d-Gal and the transfer of an arabinopyranose from UDP-ß-l-Arap to galactan chains. The two substrates share a similar structure, but UDP-α-d-Gal is the preferred substrate, with a 10-fold higher affinity. Transfer of Arap to galactan prevents further addition of galactose residues, resulting in a lower degree of polymerization. We show that this dual activity occurs both in vitro and in vivo. The herein described bifunctionality of AtGALS1 may suggest that plants can produce the incredible structural diversity of polysaccharides without a dedicated glycosyltransferase for each glycosidic linkage.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Galactanos/metabolismo , Galactosiltransferases/metabolismo , Glicosiltransferases/metabolismo , Oligossacarídeos/metabolismo , Pectinas/metabolismo , Arabidopsis/metabolismo , Catálise , Galactose/metabolismo , Microssomos/enzimologia , Microssomos/metabolismo , Nucleosídeos/metabolismo , Vigna/enzimologia , Vigna/metabolismo
2.
Glycobiology ; 29(12): 839-846, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31679023

RESUMO

l-arabinofuranose is a ubiquitous component of the cell wall and various natural products in plants, where it is synthesized from cytosolic UDP-arabinopyranose (UDP-Arap). The biosynthetic machinery long remained enigmatic in terms of responsible enzymes and subcellular localization. With the discovery of UDP-Arap mutase in plant cytosol, the demonstration of its role in cell-wall arabinose incorporation and the identification of UDP-arabinofuranose transporters in the Golgi membrane, it is clear that the cytosolic UDP-Arap mutases are the key enzymes converting UDP-Arap to UDP-arabinofuranose for cell wall and natural product biosynthesis. This has recently been confirmed by several genotype/phenotype studies. In contrast to the solid evidence pertaining to UDP-Arap mutase function in vivo, the molecular features, including enzymatic mechanism and oligomeric state, remain unknown. However, these enzymes belong to the small family of proteins originally identified as reversibly glycosylated polypeptides (RGPs), which has been studied for >20 years. Here, we review the UDP-Arap mutase and RGP literature together, to summarize and systemize reported molecular characteristics and relations to other proteins.


Assuntos
Transferases Intramoleculares/química , Transferases Intramoleculares/metabolismo , Oryza/enzimologia , Açúcares de Uridina Difosfato/química , Açúcares de Uridina Difosfato/metabolismo , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Oryza/citologia
3.
BMC Plant Biol ; 19(1): 71, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755179

RESUMO

BACKGROUND: Natural rubber is currently produced nearly exclusively from latex of the Para rubber tree, Hevea brasiliensis. The desire to reduce the environmental cost of rubber production, fears of pathogen susceptibility in clonal Hevea plantations, volatility in the price of natural rubber, and increasing labor costs have motivated efforts to diversify the supply of natural rubber by developing alternative rubber crops such as guayule (Parthenium argentatum Gray). In Hevea, latex is produced as an exudate following wounding while in guayule, rubber is deposited within the cortical parenchyma and its production is strongly influenced by environmental conditions. RESULTS: To better understand the enzymology and regulation of guayule rubber biosynthesis and to identify genes with potential uses in the improvement of rubber yields, we conducted de novo transcriptome assembly and differential gene expression analyses of this process in guayule. This analysis supports a role for rubber in the defense against pathogens, identified new enzymes potentially involved in the biosynthesis of rubber as well as transcription factors specifically expressed in rubber-producing tissues. CONCLUSIONS: Data presented here will be useful in the improvement of guayule as an alternative source of natural rubber and in better understanding the biosynthesis of this critical polymer. In particular, some of the candidate transcription factors are likely to control the rubber biosynthesis pathway and are good targets for molecular breeding or engineering of guayule plants with higher and more consistent production of rubber.


Assuntos
Asteraceae/genética , Borracha/metabolismo , Transcriptoma/genética
4.
J Exp Bot ; 70(19): 5495-5506, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31257449

RESUMO

Plants have evolved various strategies to sense and respond to saline environments, which severely reduce plant growth and limit agricultural productivity. Alteration to the cell wall is one strategy that helps plants adapt to salt stress. However, the physiological mechanism of how the cell wall components respond to salt stress is not fully understood. Here, we show that expression of XTH30, encoding xyloglucan endotransglucosylase-hydrolase30, is strongly up-regulated in response to salt stress in Arabidopsis. Loss-of-function of XTH30 leads to increased salt tolerance and overexpression of XTH30 results in salt hypersensitivity. XTH30 is located in the plasma membrane and is highly expressed in the root, flower, stem, and etiolated hypocotyl. The NaCl-induced increase in xyloglucan (XyG)-derived oligosaccharide (XLFG) of the wild type is partly blocked in xth30 mutants. Loss-of-function of XTH30 slows down the decrease of crystalline cellulose content and the depolymerization of microtubules caused by salt stress. Moreover, lower Na+ accumulation in shoot and lower H2O2 content are found in xth30 mutants in response to salt stress. Taken together, these results indicate that XTH30 modulates XyG side chains, altered abundance of XLFG, cellulose synthesis, and cortical microtubule stability, and negatively affecting salt tolerance.


Assuntos
Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Glicosídeo Hidrolases/genética , Tolerância ao Sal/genética , Regulação para Cima , Proteínas de Arabidopsis/metabolismo , Glucosiltransferases/metabolismo , Glicosídeo Hidrolases/metabolismo
5.
New Phytol ; 218(3): 1049-1060, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29460505

RESUMO

Insights into the evolution of plant cell walls have important implications for comprehending these diverse and abundant biological structures. In order to understand the evolving structure-function relationships of the plant cell wall, it is imperative to trace the origin of its different components. The present study is focused on plant 1,4-ß-xylan, tracing its evolutionary origin by genome and transcriptome mining followed by phylogenetic analysis, utilizing a large selection of plants and algae. It substantiates the findings by heterologous expression and biochemical characterization of a charophyte alga xylan synthase. Of the 12 known gene classes involved in 1,4-ß-xylan formation, XYS1/IRX10 in plants, IRX7, IRX8, IRX9, IRX14 and GUX occurred for the first time in charophyte algae. An XYS1/IRX10 ortholog from Klebsormidium flaccidum, designated K. flaccidumXYLAN SYNTHASE-1 (KfXYS1), possesses 1,4-ß-xylan synthase activity, and 1,4-ß-xylan occurs in the K. flaccidum cell wall. These data suggest that plant 1,4-ß-xylan originated in charophytes and shed light on the origin of one of the key cell wall innovations to occur in charophyte algae, facilitating terrestrialization and emergence of polysaccharide-based plant cell walls.


Assuntos
Parede Celular/metabolismo , Carofíceas/enzimologia , Pentosiltransferases/metabolismo , Células Vegetais/metabolismo , Motivos de Aminoácidos , Vias Biossintéticas , Carofíceas/genética , Evolução Molecular , Células HEK293 , Humanos , Pentosiltransferases/química , Filogenia
6.
Plant Physiol ; 173(1): 240-255, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27246096

RESUMO

Aliphatic and aromatic lipids are both essential structural components of the plant cuticle, an important interface between the plant and environment. Although cross links between aromatic and aliphatic or other moieties are known to be associated with the formation of leaf cutin and root and seed suberin, the contribution of aromatic lipids to the biosynthesis of anther cuticles and pollen walls remains elusive. In this study, we characterized the rice (Oryza sativa) male sterile mutant, defective pollen wall 2 (dpw2), which showed an abnormal anther cuticle, a defective pollen wall, and complete male sterility. Compared with the wild type, dpw2 anthers have increased amounts of cutin and waxes and decreased levels of lipidic and phenolic compounds. DPW2 encodes a cytoplasmically localized BAHD acyltransferase. In vitro assays demonstrated that recombinant DPW2 specifically transfers hydroxycinnamic acid moieties, using ω-hydroxy fatty acids as acyl acceptors and hydroxycinnamoyl-CoAs as acyl donors. Thus, The cytoplasmic hydroxycinnamoyl-CoA:ω-hydroxy fatty acid transferase DPW2 plays a fundamental role in male reproduction via the biosynthesis of key components of the anther cuticle and pollen wall.


Assuntos
Aciltransferases/metabolismo , Oryza/enzimologia , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Pólen/enzimologia , Pólen/crescimento & desenvolvimento , Sequência de Aminoácidos , Parede Celular/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Metabolismo dos Lipídeos , Lipídeos de Membrana/metabolismo , Modelos Biológicos , Mutação/genética , Oryza/genética , Oryza/ultraestrutura , Fenóis/metabolismo , Fenótipo , Pólen/ultraestrutura , Transporte Proteico , Proteínas Recombinantes/metabolismo , Análise de Sequência de Proteína , Ceras/metabolismo
7.
Plant Cell ; 27(4): 1218-27, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25804536

RESUMO

Most glycosylation reactions require activated glycosyl donors in the form of nucleotide sugars to drive processes such as posttranslational modifications and polysaccharide biosynthesis. Most plant cell wall polysaccharides are biosynthesized in the Golgi apparatus from cytosolic-derived nucleotide sugars, which are actively transferred into the Golgi lumen by nucleotide sugar transporters (NSTs). An exception is UDP-xylose, which is biosynthesized in both the cytosol and the Golgi lumen by a family of UDP-xylose synthases. The NST-based transport of UDP-xylose into the Golgi lumen would appear to be redundant. However, employing a recently developed approach, we identified three UDP-xylose transporters in the Arabidopsis thaliana NST family and designated them UDP-XYLOSE TRANSPORTER1 (UXT1) to UXT3. All three transporters localize to the Golgi apparatus, and UXT1 also localizes to the endoplasmic reticulum. Mutants in UXT1 exhibit ∼30% reduction in xylose in stem cell walls. These findings support the importance of the cytosolic UDP-xylose pool and UDP-xylose transporters in cell wall biosynthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Uridina Difosfato Xilose/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Monossacarídeos/genética
8.
Biochem Biophys Res Commun ; 491(3): 834-839, 2017 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-28559135

RESUMO

As the major resource of reactive oxygen species (ROS), the NADPH oxidases (Rbohs) have been shown to play important roles in plant cells under normal growth and stress conditions. Although many family members of Rbohs were studied, little is known about the function of RbohI in Arabidopsis thaliana. Here, we report that exogenous ABA application decreases RbohI expression and mannitol significantly increases RbohI expression at transcript level. The RbohI transcripts were strongly detected in dry seeds and roots. The loss-of-function mutant rbohI exhibited sensitivity to ABA and mannitol stress during germination. Furthermore, the lateral root growth of rbohI was severely inhibited after treatment with mannitol stress. Overexpression of RbohI in Arabidopsis significantly improves the drought tolerance. Moreover, more H2O2 accumulated in RbohI overexpressors than in wild type plants in response to mannitol stress. Our conclusion is that AtRbohI functions in drought-stress response in Arabidopsis thaliana.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Secas , Resposta ao Choque Térmico/fisiologia , NADPH Oxidases/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia
9.
Plant Physiol ; 171(3): 1651-64, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27208250

RESUMO

Calcium/calmodulin-dependent protein kinase (CCaMK) has been shown to play an important role in abscisic acid (ABA)-induced antioxidant defense and enhance the tolerance of plants to drought stress. However, its downstream molecular events are poorly understood. Here, we identify a NAC transcription factor, ZmNAC84, in maize (Zea mays), which physically interacts with ZmCCaMK in vitro and in vivo. ZmNAC84 displays a partially overlapping expression pattern with ZmCCaMK after ABA treatment, and H2O2 is required for ABA-induced ZmNAC84 expression. Functional analysis reveals that ZmNAC84 is essential for ABA-induced antioxidant defense in a ZmCCaMK-dependent manner. Furthermore, ZmCCaMK directly phosphorylates Ser-113 of ZmNAC84 in vitro, and Ser-113 is essential for the ABA-induced stimulation of antioxidant defense by ZmCCaMK. Moreover, overexpression of ZmNAC84 in tobacco (Nicotiana tabacum) can improve drought tolerance and alleviate drought-induced oxidative damage of transgenic plants. These results define a mechanism for ZmCCaMK function in ABA-induced antioxidant defense, where ABA-produced H2O2 first induces expression of ZmCCaMK and ZmNAC84 and activates ZmCCaMK. Subsequently, the activated ZmCCaMK phosphorylates ZmNAC84 at Ser-113, thereby inducing antioxidant defense by activating downstream genes.


Assuntos
Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Fatores de Transcrição/metabolismo , Zea mays/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Secas , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plântula/genética , Serina/metabolismo , Nicotiana/genética , Nicotiana/fisiologia , Fatores de Transcrição/genética , Zea mays/efeitos dos fármacos , Zea mays/genética
10.
Plant Cell ; 26(8): 3314-25, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25122154

RESUMO

Glycosyl inositol phosphorylceramide (GIPC) sphingolipids are a major class of lipids in fungi, protozoans, and plants. GIPCs are abundant in the plasma membrane in plants, comprising around a quarter of the total lipids in these membranes. Plant GIPCs contain unique glycan decorations that include a conserved glucuronic acid (GlcA) residue and various additional sugars; however, no proteins responsible for glycosylating GIPCs have been identified to date. Here, we show that the Arabidopsis thaliana protein INOSITOL PHOSPHORYLCERAMIDE GLUCURONOSYLTRANSFERASE1 (IPUT1) transfers GlcA from UDP-GlcA to GIPCs. To demonstrate IPUT1 activity, we introduced the IPUT1 gene together with genes for a UDP-glucose dehydrogenase from Arabidopsis and a human UDP-GlcA transporter into a yeast mutant deficient in the endogenous inositol phosphorylceramide (IPC) mannosyltransferase. In this engineered yeast strain, IPUT1 transferred GlcA to IPC. Overexpression or silencing of IPUT1 in Nicotiana benthamiana resulted in an increase or a decrease, respectively, in IPC glucuronosyltransferase activity in vitro. Plants in which IPUT1 was silenced accumulated IPC, the immediate precursor, as well as ceramides and glucosylceramides. Plants overexpressing IPUT1 showed an increased content of GIPCs. Mutations in IPUT1 are not transmitted through pollen, indicating that these sphingolipids are essential in plants.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Ácido Glucurônico/metabolismo , Glucuronosiltransferase/fisiologia , Pólen/fisiologia , Esfingolipídeos/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inativação Gênica , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Humanos , Pólen/enzimologia , Pólen/metabolismo , Saccharomyces cerevisiae/genética , Nicotiana/genética , Nicotiana/metabolismo
11.
BMC Plant Biol ; 16: 90, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27091363

RESUMO

BACKGROUND: Pectins are a group of structurally complex plant cell wall polysaccharides whose biosynthesis and function remain poorly understood. The pectic polysaccharide rhamnogalacturonan-I (RG-I) has two types of arabinogalactan side chains, type-I and type-II arabinogalactans. To date few enzymes involved in the biosynthesis of pectin have been described. Here we report the identification of a highly conserved putative glycosyltransferase encoding gene, Pectic ArabinoGalactan synthesis-Related (PAGR), affecting the biosynthesis of RG-I arabinogalactans and critical for pollen tube growth. RESULTS: T-DNA insertions in PAGR were identified in Arabidopsis thaliana and were found to segregate at a 1:1 ratio of heterozygotes to wild type. We were unable to isolate homozygous pagr mutants as pagr mutant alleles were not transmitted via pollen. In vitro pollen germination assays revealed reduced rates of pollen tube formation in pollen from pagr heterozygotes. To characterize a loss-of-function phenotype for PAGR, the Nicotiana benthamiana orthologs, NbPAGR-A and B, were transiently silenced using Virus Induced Gene Silencing. NbPAGR-silenced plants exhibited reduced internode and petiole expansion. Cell wall materials from NbPAGR-silenced plants had reduced galactose content compared to the control. Immunological and linkage analyses support that RG-I has reduced type-I arabinogalactan content and reduced branching of the RG-I backbone in NbPAGR-silenced plants. Arabidopsis lines overexpressing PAGR exhibit pleiotropic developmental phenotypes and the loss of apical dominance as well as an increase in RG-I type-II arabinogalactan content. CONCLUSIONS: Together, results support a function for PAGR in the biosynthesis of RG-I arabinogalactans and illustrate the essential roles of these polysaccharides in vegetative and reproductive plant growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glicosiltransferases/metabolismo , Pectinas/biossíntese , Pólen/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Fertilidade/genética , Galactanos/biossíntese , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genótipo , Glicosiltransferases/genética , Complexo de Golgi/metabolismo , Immunoblotting , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Mutação , Fenótipo , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/crescimento & desenvolvimento , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo
12.
Plant Cell ; 24(12): 5024-36, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23243126

RESUMO

ß-1,4-Galactans are abundant polysaccharides in plant cell walls, which are generally found as side chains of rhamnogalacturonan I. Rhamnogalacturonan I is a major component of pectin with a backbone of alternating rhamnose and galacturonic acid residues and side chains that include α-1,5-arabinans, ß-1,4-galactans, and arabinogalactans. Many enzymes are required to synthesize pectin, but few have been identified. Pectin is most abundant in primary walls of expanding cells, but ß-1,4-galactan is relatively abundant in secondary walls, especially in tension wood that forms in response to mechanical stress. We investigated enzymes in glycosyltransferase family GT92, which has three members in Arabidopsis thaliana, which we designated GALACTAN SYNTHASE1, (GALS1), GALS2 and GALS3. Loss-of-function mutants in the corresponding genes had a decreased ß-1,4-galactan content, and overexpression of GALS1 resulted in plants with 50% higher ß-1,4-galactan content. The plants did not have an obvious growth phenotype. Heterologously expressed and affinity-purified GALS1 could transfer Gal residues from UDP-Gal onto ß-1,4-galactopentaose. GALS1 specifically formed ß-1,4-galactosyl linkages and could add successive ß-1,4-galactosyl residues to the acceptor. These observations confirm the identity of the GT92 enzyme as ß-1,4-galactan synthase. The identification of this enzyme could provide an important tool for engineering plants with improved bioenergy properties.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Pectinas/biossíntese , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Plantas Geneticamente Modificadas
13.
Plant Physiol ; 163(3): 1107-17, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24019426

RESUMO

The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double, triple, and quadruple loss-of-function mutants of all four members of the RWA family in Arabidopsis (Arabidopsis thaliana). In contrast to rwa2, the triple and quadruple rwa mutants display severe growth phenotypes revealing the importance of wall acetylation for plant growth and development. The quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco)mannan, and xyloglucan as well as overall cell wall acetylation is affected differently in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell differentiation of cell types with secondary cell walls.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Parede Celular/genética , Mutação , Folhas de Planta/genética , Acetilação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Parede Celular/metabolismo , Teste de Complementação Genética , Glucanos/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Xilanos/metabolismo
14.
Plant Cell ; 23(4): 1373-90, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21478444

RESUMO

L-Ara, an important constituent of plant cell walls, is found predominantly in the furanose rather than in the thermodynamically more stable pyranose form. Nucleotide sugar mutases have been demonstrated to interconvert UDP-Larabinopyranose (UDP-Arap) and UDP-L-arabinofuranose (UDP-Araf) in rice (Oryza sativa). These enzymes belong to a small gene family encoding the previously named Reversibly Glycosylated Proteins (RGPs). RGPs are plant-specific cytosolic proteins that tend to associate with the endomembrane system. In Arabidopsis thaliana, the RGP protein family consists of five closely related members. We characterized all five RGPs regarding their expression pattern and subcellular localizations in transgenic Arabidopsis plants. Enzymatic activity assays of recombinant proteins expressed in Escherichia coli identified three of the Arabidopsis RGP protein family members as UDP-L-Ara mutases that catalyze the formation of UDP-Araf from UDP-Arap. Coimmunoprecipitation and subsequent liquid chromatography-electrospray ionization-tandem mass spectrometry analysis revealed a distinct interaction network between RGPs in different Arabidopsis organs. Examination of cell wall polysaccharide preparations from RGP1 and RGP2 knockout mutants showed a significant reduction in total L-Ara content (12­31%) compared with wild-type plants. Concomitant downregulation of RGP1 and RGP2 expression results in plants almost completely deficient in cell wall­derived L-Ara and exhibiting severe developmental defects.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo dos Carboidratos , Carboidratos/análise , Parede Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Transferases Intramoleculares/metabolismo , Complexos Multiproteicos/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Frações Subcelulares/metabolismo
15.
Plant Physiol ; 159(4): 1408-17, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22706449

RESUMO

Xylan is a major component of the plant cell wall and the most abundant noncellulosic component in the secondary cell walls that constitute the largest part of plant biomass. Dicot glucuronoxylan consists of a linear backbone of ß(1,4)-linked xylose residues substituted with α(1,2)-linked glucuronic acid (GlcA). Although several genes have been implicated in xylan synthesis through mutant analyses, the biochemical mechanisms responsible for synthesizing xylan are largely unknown. Here, we show evidence for biochemical activity of GUX1 (for GlcA substitution of xylan 1), a member of Glycosyltransferase Family 8 in Arabidopsis (Arabidopsis thaliana) that is responsible for adding the glucuronosyl substitutions onto the xylan backbone. GUX1 has characteristics typical of Golgi-localized glycosyltransferases and a K(m) for UDP-GlcA of 165 µm. GUX1 strongly favors xylohexaose as an acceptor over shorter xylooligosaccharides, and with xylohexaose as an acceptor, GlcA is almost exclusively added to the fifth xylose residue from the nonreducing end. We also show that several related proteins, GUX2 to GUX5 and Plant Glycogenin-like Starch Initiation Protein6, are Golgi localized and that only two of these proteins, GUX2 and GUX4, have activity as xylan α-glucuronosyltransferases.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Glucuronosiltransferase/metabolismo , Glicosiltransferases/metabolismo , Xilanos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Microssomos/enzimologia , Modelos Moleculares , Filogenia , Transporte Proteico , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Frações Subcelulares/enzimologia , Nicotiana/metabolismo
16.
Plant Physiol ; 158(2): 654-65, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22158675

RESUMO

The cuticle is a complex aliphatic polymeric layer connected to the cell wall and covers surfaces of all aerial plant organs. The cuticle prevents nonstomatal water loss, regulates gas exchange, and acts as a barrier against pathogen infection. The cuticle is synthesized by epidermal cells and predominantly consists of an aliphatic polymer matrix (cutin) and intracuticular and epicuticular waxes. Cutin monomers are primarily C(16) and C(18) unsubstituted, ω-hydroxy, and α,ω-dicarboxylic fatty acids. Phenolics such as ferulate and p-coumarate esters also contribute to a minor extent to the cutin polymer. Here, we present the characterization of a novel acyl-coenzyme A (CoA)-dependent acyl-transferase that is encoded by a gene designated Deficient in Cutin Ferulate (DCF). The DCF protein is responsible for the feruloylation of ω-hydroxy fatty acids incorporated into the cutin polymer of aerial Arabidopsis (Arabidopsis thaliana) organs. The enzyme specifically transfers hydroxycinnamic acids using ω-hydroxy fatty acids as acyl acceptors and hydroxycinnamoyl-CoAs, preferentially feruloyl-CoA and sinapoyl-CoA, as acyl donors in vitro. Arabidopsis mutant lines carrying DCF loss-of-function alleles are devoid of rosette leaf cutin ferulate and exhibit a 50% reduction in ferulic acid content in stem insoluble residues. DCF is specifically expressed in the epidermis throughout all green Arabidopsis organs. The DCF protein localizes to the cytosol, suggesting that the feruloylation of cutin monomers takes place in the cytoplasm.


Assuntos
Arabidopsis/metabolismo , Ácidos Cumáricos/metabolismo , Ácidos Graxos/metabolismo , Lipídeos de Membrana/metabolismo , Poliésteres/metabolismo , Transferases/genética , Arabidopsis/enzimologia , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Transferases/metabolismo
17.
J Exp Bot ; 64(12): 3787-802, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23956414

RESUMO

Brassinosteroid (BR)-induced antioxidant defence has been shown to enhance stress tolerance. In this study, the role of the maize 65 kDa microtubule-associated protein (MAP65), ZmMAP65-1a, in BR-induced antioxidant defence was investigated. Treatment with BR increased the expression of ZmMAP65-1a in maize (Zea mays) leaves and mesophyll protoplasts. Transient expression and RNA interference silencing of ZmMAP65-1a in mesophyll protoplasts further revealed that ZmMAP65-1a is required for the BR-induced increase in expression and activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX). Both exogenous and BR-induced endogenous H2O2 increased the expression of ZmMAP65-1a. Conversely, transient expression of ZmMAP65-1a in maize mesophyll protoplasts enhanced BR-induced H2O2 accumulation, while transient silencing of ZmMAP65-1a blocked the BR-induced expression of NADPH oxidase genes and inhibited BR-induced H2O2 accumulation. Inhibiting the activity and gene expression of ZmMPK5 significantly prevented the BR-induced expression of ZmMAP65-1a. Likewise, transient expression of ZmMPK5 enhanced BR-induced activities of the antioxidant defence enzymes SOD and APX in a ZmMAP65- 1a-dependent manner. ZmMPK5 directly interacted with ZmMAP65-1a in vivo and phosphorylated ZmMAP65-1a in vitro. These results suggest that BR-induced antioxidant defence in maize operates through the interaction of ZmMPK5 with ZmMAP65-1a. Furthermore, ZmMAP65-1a functions in H2O2 self-propagation via regulation of the expression of NADPH oxidase genes in BR signalling.


Assuntos
Antioxidantes/metabolismo , Brassinosteroides/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Plantas/genética , Zea mays/genética , Peróxido de Hidrogênio/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase , Protoplastos/enzimologia , Transdução de Sinais , Zea mays/enzimologia
18.
Planta ; 236(1): 185-96, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22293853

RESUMO

A mung bean (Vigna radiata) pectin acetyl esterase (CAA67728) was heterologously expressed in tubers of potato (Solanum tuberosum) under the control of the granule-bound starch synthase promoter or the patatin promoter in order to probe the significance of O-acetylation on cell wall and tissue properties. The recombinant tubers showed no apparent macroscopic phenotype. The enzyme was recovered from transgenic tubers using a high ionic strength buffer and the extract was active against a range of pectic substrates. Partial in vivo de-acetylation of cell wall polysaccharides occurred in the transformants, as shown by a 39% decrease in the degree of acetylation (DA) of tuber cell wall material (CWM). Treatment of CWM using a combination of endo-polygalacturonase and pectin methyl esterase extracted more pectin polymers from the transformed tissue compared to wild type. The largest effect of the pectin acetyl esterase (68% decrease in DA) was seen in the residue from this extraction, suggesting that the enzyme is preferentially active on acetylated pectin that is tightly bound to the cell wall. The effects of acetylation on tuber mechanical properties were investigated by tests of failure under compression and by determination of viscoelastic relaxation spectra. These tests suggested that de-acetylation resulted in a stiffer tuber tissue and a stronger cell wall matrix, as a result of changes to a rapidly relaxing viscoelastic component. These results are discussed in relation to the role of pectin acetylation in primary cell walls and its implications for industrial uses of potato fibres.


Assuntos
Parede Celular/metabolismo , Esterases/metabolismo , Tubérculos/metabolismo , Solanum tuberosum/enzimologia , Solanum tuberosum/genética , Acetilação , Fabaceae/enzimologia , Fabaceae/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Pectinas/metabolismo , Plantas Geneticamente Modificadas , Estresse Mecânico
19.
Planta ; 236(1): 115-28, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22270560

RESUMO

Glycosyltransferase complexes are known to be involved in plant cell wall biosynthesis, as for example in cellulose. It is not known to what extent such complexes are involved in biosynthesis of pectin as well. To address this question, work was initiated on ARAD1 (ARABINAN DEFICIENT 1) and its close homolog ARAD2 of glycosyltransferase family GT47. Using bimolecular fluorescence complementation, Förster resonance energy transfer and non-reducing gel electrophoresis, we show that ARAD1 and ARAD2 are localized in the same Golgi compartment and form homo-and heterodimeric intermolecular dimers when expressed transiently in Nicotiana benthamiana. Biochemical analysis of arad2 cell wall or fractions hereof showed no difference in the monosaccharide composition, when compared with wild type. The double mutant arad1 arad2 had an arad1 cell wall phenotype and overexpression of ARAD2 did not complement the arad1 phenotype, indicating that ARAD1 and ARAD2 are not redundant enzymes. To investigate the cell wall structure of the mutants in detail, immunohistochemical analyses were carried out on arad1, arad2 and arad1 arad2 using the arabinan-specific monoclonal antibody LM13. In roots, the labeling pattern of arad2 was distinct from both that of wild type, arad1 and arad1 arad2. Likewise, in epidermal cell walls of inflorescence stems, LM13 binding differed between arad2 and WILD TYPE, arad1 or arad1 arad2. Altogether, these data show that ARAD2 is associated with arabinan biosynthesis, not redundant with ARAD1, and that the two glycosyltransferases may function in complexes held together by disulfide bridges.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Parede Celular/química , Pectinas/biossíntese , Pentosiltransferases/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Polissacarídeos/biossíntese , Sequência de Aminoácidos , Dissulfetos/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Glicosiltransferases/metabolismo , Mutação , Plantas Geneticamente Modificadas , Alinhamento de Sequência , Nicotiana/metabolismo , Transformação Genética
20.
Plant Physiol ; 155(3): 1068-78, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21212300

RESUMO

Nearly all polysaccharides in plant cell walls are O-acetylated, including the various pectic polysaccharides and the hemicelluloses xylan, mannan, and xyloglucan. However, the enzymes involved in the polysaccharide acetylation have not been identified. While the role of polysaccharide acetylation in vivo is unclear, it is known to reduce biofuel yield from lignocellulosic biomass by the inhibition of microorganisms used for fermentation. We have analyzed four Arabidopsis (Arabidopsis thaliana) homologs of the protein Cas1p known to be involved in polysaccharide O-acetylation in Cryptococcus neoformans. Loss-of-function mutants in one of the genes, designated REDUCED WALL ACETYLATION2 (RWA2), had decreased levels of acetylated cell wall polymers. Cell wall material isolated from mutant leaves and treated with alkali released about 20% lower amounts of acetic acid when compared with the wild type. The same level of acetate deficiency was found in several pectic polymers and in xyloglucan. Thus, the rwa2 mutations affect different polymers to the same extent. There were no obvious morphological or growth differences observed between the wild type and rwa2 mutants. However, both alleles of rwa2 displayed increased tolerance toward the necrotrophic fungal pathogen Botrytis cinerea.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/microbiologia , Botrytis/fisiologia , Parede Celular/metabolismo , Imunidade Inata/imunologia , Mutação/genética , Doenças das Plantas/imunologia , Acetilação , Adaptação Fisiológica , Alelos , Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , DNA Bacteriano/genética , Epitopos/imunologia , Proteínas Fúngicas/química , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Mutagênese Insercional/genética , Proteínas Mutantes/isolamento & purificação , Pectinas/metabolismo , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Transporte Proteico , Homologia de Sequência de Aminoácidos , Frações Subcelulares/metabolismo , Xilanos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA