Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(12): 2056-2067, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38006880

RESUMO

Detection of aberrantly spliced genes is an important step in RNA-seq-based rare-disease diagnostics. We recently developed FRASER, a denoising autoencoder-based method that outperformed alternative methods of detecting aberrant splicing. However, because FRASER's three splice metrics are partially redundant and tend to be sensitive to sequencing depth, we introduce here a more robust intron-excision metric, the intron Jaccard index, that combines the alternative donor, alternative acceptor, and intron-retention signal into a single value. Moreover, we optimized model parameters and filter cutoffs by using candidate rare-splice-disrupting variants as independent evidence. On 16,213 GTEx samples, our improved algorithm, FRASER 2.0, called typically 10 times fewer splicing outliers while increasing the proportion of candidate rare-splice-disrupting variants by 10-fold and substantially decreasing the effect of sequencing depth on the number of reported outliers. To lower the multiple-testing correction burden, we introduce an option to select the genes to be tested for each sample instead of a transcriptome-wide approach. This option can be particularly useful when prior information, such as candidate variants or genes, is available. Application on 303 rare-disease samples confirmed the relative reduction in the number of outlier calls for a slight loss of sensitivity; FRASER 2.0 recovered 22 out of 26 previously identified pathogenic splicing cases with default cutoffs and 24 when multiple-testing correction was limited to OMIM genes containing rare variants. Altogether, these methodological improvements contribute to more effective RNA-seq-based rare diagnostics by drastically reducing the amount of splicing outlier calls per sample at minimal loss of sensitivity.


Assuntos
Processamento Alternativo , Splicing de RNA , Humanos , Processamento Alternativo/genética , Íntrons/genética , Splicing de RNA/genética , RNA-Seq , Algoritmos
2.
Genome Med ; 16(1): 70, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769532

RESUMO

BACKGROUND: Rare oncogenic driver events, particularly affecting the expression or splicing of driver genes, are suspected to substantially contribute to the large heterogeneity of hematologic malignancies. However, their identification remains challenging. METHODS: To address this issue, we generated the largest dataset to date of matched whole genome sequencing and total RNA sequencing of hematologic malignancies from 3760 patients spanning 24 disease entities. Taking advantage of our dataset size, we focused on discovering rare regulatory aberrations. Therefore, we called expression and splicing outliers using an extension of the workflow DROP (Detection of RNA Outliers Pipeline) and AbSplice, a variant effect predictor that identifies genetic variants causing aberrant splicing. We next trained a machine learning model integrating these results to prioritize new candidate disease-specific driver genes. RESULTS: We found a median of seven expression outlier genes, two splicing outlier genes, and two rare splice-affecting variants per sample. Each category showed significant enrichment for already well-characterized driver genes, with odds ratios exceeding three among genes called in more than five samples. On held-out data, our integrative modeling significantly outperformed modeling based solely on genomic data and revealed promising novel candidate driver genes. Remarkably, we found a truncated form of the low density lipoprotein receptor LRP1B transcript to be aberrantly overexpressed in about half of hairy cell leukemia variant (HCL-V) samples and, to a lesser extent, in closely related B-cell neoplasms. This observation, which was confirmed in an independent cohort, suggests LRP1B as a novel marker for a HCL-V subclass and a yet unreported functional role of LRP1B within these rare entities. CONCLUSIONS: Altogether, our census of expression and splicing outliers for 24 hematologic malignancy entities and the companion computational workflow constitute unique resources to deepen our understanding of rare oncogenic events in hematologic cancers.


Assuntos
Neoplasias Hematológicas , Transcriptoma , Humanos , Neoplasias Hematológicas/genética , Splicing de RNA , Regulação Neoplásica da Expressão Gênica , Oncogenes , Perfilação da Expressão Gênica , Receptores de LDL/genética
3.
medRxiv ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066374

RESUMO

Detection of aberrantly spliced genes is an important step in RNA-seq-based rare disease diagnostics. We recently developed FRASER, a denoising autoencoder-based method for aberrant splicing detection that outperformed alternative approaches. However, as FRASER's three splice metrics are partially redundant and tend to be sensitive to sequencing depth, we introduce here a more robust intron excision metric, the Intron Jaccard Index, that combines alternative donor, alternative acceptor, and intron retention signal into a single value. Moreover, we optimized model parameters and filter cutoffs using candidate rare splice-disrupting variants as independent evidence. On 16,213 GTEx samples, our improved algorithm called typically 10 times fewer splicing outliers while increasing the proportion of candidate rare splice-disrupting variants by 10 fold and substantially decreasing the effect of sequencing depth on the number of reported outliers. Application on 303 rare disease samples confirmed the reduction fold-change of the number of outlier calls for a slight loss of sensitivity (only 2 out of 22 previously identified pathogenic splicing cases not recovered). Altogether, these methodological improvements contribute to more effective RNA-seq-based rare diagnostics by a drastic reduction of the amount of splicing outlier calls per sample at minimal loss of sensitivity.

4.
Nat Commun ; 12(1): 529, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483494

RESUMO

Aberrant splicing is a major cause of rare diseases.  However, its prediction from genome sequence alone remains in most cases inconclusive. Recently, RNA sequencing has proven to be an effective complementary avenue to detect aberrant splicing. Here, we develop FRASER, an algorithm to detect aberrant splicing from RNA sequencing data. Unlike existing methods, FRASER captures not only alternative splicing but also intron retention events. This typically doubles the number of detected aberrant events and identified a pathogenic intron retention in MCOLN1 causing mucolipidosis. FRASER automatically controls for latent confounders, which are widespread and affect sensitivity substantially. Moreover, FRASER is based on a count distribution and multiple testing correction, thus reducing the number of calls by two orders of magnitude over commonly applied z score cutoffs, with a minor loss of sensitivity. Applying FRASER to rare disease diagnostics is demonstrated by reprioritizing a pathogenic aberrant exon truncation in TAZ from a published dataset. FRASER is easy to use and freely available.


Assuntos
Algoritmos , Processamento Alternativo , Biologia Computacional/métodos , RNA-Seq/métodos , Análise de Sequência de RNA/métodos , Internet , Íntrons/genética , Software
5.
Nat Protoc ; 16(2): 1276-1296, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33462443

RESUMO

RNA sequencing (RNA-seq) has emerged as a powerful approach to discover disease-causing gene regulatory defects in individuals affected by genetically undiagnosed rare disorders. Pioneering studies have shown that RNA-seq could increase the diagnosis rates over DNA sequencing alone by 8-36%, depending on the disease entity and tissue probed. To accelerate adoption of RNA-seq by human genetics centers, detailed analysis protocols are now needed. We present a step-by-step protocol that details how to robustly detect aberrant expression levels, aberrant splicing and mono-allelic expression in RNA-seq data using dedicated statistical methods. We describe how to generate and assess quality control plots and interpret the analysis results. The protocol is based on the detection of RNA outliers pipeline (DROP), a modular computational workflow that integrates all the analysis steps, can leverage parallel computing infrastructures and generates browsable web page reports.


Assuntos
Sequência de Bases/genética , Expressão Gênica/genética , Análise de Sequência de RNA/métodos , Diagnóstico , Técnicas e Procedimentos Diagnósticos , Doença/genética , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , RNA/genética , Software , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA