Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(18): 3882-3902.e24, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37597510

RESUMO

Inflammation can trigger lasting phenotypes in immune and non-immune cells. Whether and how human infections and associated inflammation can form innate immune memory in hematopoietic stem and progenitor cells (HSPC) has remained unclear. We found that circulating HSPC, enriched from peripheral blood, captured the diversity of bone marrow HSPC, enabling investigation of their epigenomic reprogramming following coronavirus disease 2019 (COVID-19). Alterations in innate immune phenotypes and epigenetic programs of HSPC persisted for months to 1 year following severe COVID-19 and were associated with distinct transcription factor (TF) activities, altered regulation of inflammatory programs, and durable increases in myelopoiesis. HSPC epigenomic alterations were conveyed, through differentiation, to progeny innate immune cells. Early activity of IL-6 contributed to these persistent phenotypes in human COVID-19 and a mouse coronavirus infection model. Epigenetic reprogramming of HSPC may underlie altered immune function following infection and be broadly relevant, especially for millions of COVID-19 survivors.


Assuntos
COVID-19 , Memória Epigenética , Síndrome de COVID-19 Pós-Aguda , Animais , Humanos , Camundongos , Diferenciação Celular , COVID-19/imunologia , Modelos Animais de Doenças , Células-Tronco Hematopoéticas , Inflamação/genética , Imunidade Treinada , Monócitos/imunologia , Síndrome de COVID-19 Pós-Aguda/genética , Síndrome de COVID-19 Pós-Aguda/imunologia , Síndrome de COVID-19 Pós-Aguda/patologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38687499

RESUMO

Critical care uses syndromic definitions to describe patient groups for clinical practice and research. There is growing recognition that a "precision medicine" approach is required and that integrated biologic and physiologic data identify reproducible subpopulations that may respond differently to treatment. This article reviews the current state of the field and considers how to successfully transition to a precision medicine approach. In order to impact clinical care, identified subpopulations must do more than differentiate prognosis. They must differentiate response to treatment, ideally by defining subgroups with distinct functional or pathobiological mechanisms (endotypes). There are now multiple examples of reproducible subpopulations of sepsis, acute respiratory distress syndrome, and acute kidney or brain injury described using clinical, physiological, and/or biological data. Many of these subpopulations have demonstrated the potential to define differential treatment response, largely in retrospective studies, and that the same treatment-responsive subpopulations may cross multiple clinical syndromes (treatable traits). To bring about a change in clinical practice, a precision medicine approach must be evaluated in prospective clinical studies requiring novel adaptive trial designs. Several such studies are underway but there are multiple challenges to be tackled. Such subpopulations must be readily identifiable and be applicable to all critically ill populations around the world. Subdividing clinical syndromes into subpopulations will require large patient numbers. Global collaboration of investigators, clinicians, industry and patients over many years will therefore be required to transition to a precision medicine approach and ultimately realize treatment advances seen in other medical fields. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

3.
PLoS Pathog ; 18(9): e1010819, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121875

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS), a life-threatening condition characterized by hypoxemia and poor lung compliance, is associated with high mortality. ARDS induced by COVID-19 has similar clinical presentations and pathological manifestations as non-COVID-19 ARDS. However, COVID-19 ARDS is associated with a more protracted inflammatory respiratory failure compared to traditional ARDS. Therefore, a comprehensive molecular comparison of ARDS of different etiologies groups may pave the way for more specific clinical interventions. METHODS AND FINDINGS: In this study, we compared COVID-19 ARDS (n = 43) and bacterial sepsis-induced (non-COVID-19) ARDS (n = 24) using multi-omic plasma profiles covering 663 metabolites, 1,051 lipids, and 266 proteins. To address both between- and within- ARDS group variabilities we followed two approaches. First, we identified 706 molecules differently abundant between the two ARDS etiologies, revealing more than 40 biological processes differently regulated between the two groups. From these processes, we assembled a cascade of therapeutically relevant pathways downstream of sphingosine metabolism. The analysis suggests a possible overactivation of arginine metabolism involved in long-term sequelae of ARDS and highlights the potential of JAK inhibitors to improve outcomes in bacterial sepsis-induced ARDS. The second part of our study involved the comparison of the two ARDS groups with respect to clinical manifestations. Using a data-driven multi-omic network, we identified signatures of acute kidney injury (AKI) and thrombocytosis within each ARDS group. The AKI-associated network implicated mitochondrial dysregulation which might lead to post-ARDS renal-sequalae. The thrombocytosis-associated network hinted at a synergy between prothrombotic processes, namely IL-17, MAPK, TNF signaling pathways, and cell adhesion molecules. Thus, we speculate that combination therapy targeting two or more of these processes may ameliorate thrombocytosis-mediated hypercoagulation. CONCLUSION: We present a first comprehensive molecular characterization of differences between two ARDS etiologies-COVID-19 and bacterial sepsis. Further investigation into the identified pathways will lead to a better understanding of the pathophysiological processes, potentially enabling novel therapeutic interventions.


Assuntos
Injúria Renal Aguda , COVID-19 , Inibidores de Janus Quinases , Síndrome do Desconforto Respiratório , Sepse , Trombocitose , Arginina , COVID-19/complicações , Humanos , Interleucina-17 , Lipídeos , Síndrome do Desconforto Respiratório/etiologia , Sepse/complicações , Esfingosina
4.
Mol Med ; 29(1): 13, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703108

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS), a life-threatening condition during critical illness, is a common complication of COVID-19. It can originate from various disease etiologies, including severe infections, major injury, or inhalation of irritants. ARDS poses substantial clinical challenges due to a lack of etiology-specific therapies, multisystem involvement, and heterogeneous, poor patient outcomes. A molecular comparison of ARDS groups holds the potential to reveal common and distinct mechanisms underlying ARDS pathogenesis. METHODS: We performed a comparative analysis of urine-based metabolomics and proteomics profiles from COVID-19 ARDS patients (n = 42) and bacterial sepsis-induced ARDS patients (n = 17). To this end, we used two different approaches, first we compared the molecular omics profiles between ARDS groups, and second, we correlated clinical manifestations within each group with the omics profiles. RESULTS: The comparison of the two ARDS etiologies identified 150 metabolites and 70 proteins that were differentially abundant between the two groups. Based on these findings, we interrogated the interplay of cell adhesion/extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis through a multi-omic network approach. Moreover, we identified a proteomic signature associated with mortality in COVID-19 ARDS patients, which contained several proteins that had previously been implicated in clinical manifestations frequently linked with ARDS pathogenesis. CONCLUSION: In summary, our results provide evidence for significant molecular differences in ARDS patients from different etiologies and a potential synergy of extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis. The proteomic mortality signature should be further investigated in future studies to develop prediction models for COVID-19 patient outcomes.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Sepse , Humanos , COVID-19/complicações , Proteômica , Multiômica , Síndrome do Desconforto Respiratório/etiologia , Sepse/complicações , Inflamação
5.
Am J Pathol ; 192(7): 1001-1015, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35469796

RESUMO

Vascular injury is a well-established, disease-modifying factor in acute respiratory distress syndrome (ARDS) pathogenesis. Recently, coronavirus disease 2019 (COVID-19)-induced injury to the vascular compartment has been linked to complement activation, microvascular thrombosis, and dysregulated immune responses. This study sought to assess whether aberrant vascular activation in this prothrombotic context was associated with the induction of necroptotic vascular cell death. To achieve this, proteomic analysis was performed on blood samples from COVID-19 subjects at distinct time points during ARDS pathogenesis (hospitalized at risk, N = 59; ARDS, N = 31; and recovery, N = 12). Assessment of circulating vascular markers in the at-risk cohort revealed a signature of low vascular protein abundance that tracked with low platelet levels and increased mortality. This signature was replicated in the ARDS cohort and correlated with increased plasma angiopoietin 2 levels. COVID-19 ARDS lung autopsy immunostaining confirmed a link between vascular injury (angiopoietin 2) and platelet-rich microthrombi (CD61) and induction of necrotic cell death [phosphorylated mixed lineage kinase domain-like (pMLKL)]. Among recovery subjects, the vascular signature identified patients with poor functional outcomes. Taken together, this vascular injury signature was associated with low platelet levels and increased mortality and can be used to identify ARDS patients most likely to benefit from vascular targeted therapies.


Assuntos
Angiopoietina-2 , COVID-19 , Necroptose , Síndrome do Desconforto Respiratório , Angiopoietina-2/metabolismo , COVID-19/complicações , Humanos , Proteômica , Síndrome do Desconforto Respiratório/virologia
6.
Ann Neurol ; 91(6): 740-755, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35254675

RESUMO

OBJECTIVE: The purpose of this study was to estimate the time to recovery of command-following and associations between hypoxemia with time to recovery of command-following. METHODS: In this multicenter, retrospective, cohort study during the initial surge of the United States' pandemic (March-July 2020) we estimate the time from intubation to recovery of command-following, using Kaplan Meier cumulative-incidence curves and Cox proportional hazard models. Patients were included if they were admitted to 1 of 3 hospitals because of severe coronavirus disease 2019 (COVID-19), required endotracheal intubation for at least 7 days, and experienced impairment of consciousness (Glasgow Coma Scale motor score <6). RESULTS: Five hundred seventy-one patients of the 795 patients recovered command-following. The median time to recovery of command-following was 30 days (95% confidence interval [CI] = 27-32 days). Median time to recovery of command-following increased by 16 days for patients with at least one episode of an arterial partial pressure of oxygen (PaO2 ) value ≤55 mmHg (p < 0.001), and 25% recovered ≥10 days after cessation of mechanical ventilation. The time to recovery of command-following  was associated with hypoxemia (PaO2 ≤55 mmHg hazard ratio [HR] = 0.56, 95% CI = 0.46-0.68; PaO2 ≤70 HR = 0.88, 95% CI = 0.85-0.91), and each additional day of hypoxemia decreased the likelihood of recovery, accounting for confounders including sedation. These findings were confirmed among patients without any imagining evidence of structural brain injury (n = 199), and in a non-overlapping second surge cohort (N = 427, October 2020 to April 2021). INTERPRETATION: Survivors of severe COVID-19 commonly recover consciousness weeks after cessation of mechanical ventilation. Long recovery periods are associated with more severe hypoxemia. This relationship is not explained by sedation or brain injury identified on clinical imaging and should inform decisions about life-sustaining therapies. ANN NEUROL 2022;91:740-755.


Assuntos
Lesões Encefálicas , COVID-19 , Lesões Encefálicas/complicações , COVID-19/complicações , Estudos de Coortes , Humanos , Hipóxia , Estudos Retrospectivos , Inconsciência/complicações
7.
Respir Res ; 23(1): 94, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422037

RESUMO

BACKGROUND: Before the pandemic of coronavirus disease (COVID-19), rapidly improving acute respiratory distress syndrome (ARDS), mostly defined by early extubation, had been recognized as an increasingly prevalent subphenotype (making up 15-24% of all ARDS cases), associated with good prognosis (10% mortality in ARDSNet trials). We attempted to determine the prevalence and prognosis of rapidly improving ARDS and of persistent severe ARDS related to COVID-19. METHODS: We included consecutive patients with COVID-19 receiving invasive mechanical ventilation in three intensive care units (ICU) during the second pandemic wave in Greece. We defined rapidly improving ARDS as extubation or a partial pressure of arterial oxygen to fraction of inspired oxygen ratio (PaO2:FiO2) greater than 300 on the first day following intubation. We defined persistent severe ARDS as PaO2:FiO2 of equal to or less than 100 on the second day following intubation. RESULTS: A total of 280 intubated patients met criteria of ARDS with a median PaO2:FiO2 of 125.0 (interquartile range 93.0-161.0) on day of intubation, and overall ICU-mortality of 52.5% (ranging from 24.3 to 66.9% across the three participating sites). Prevalence of rapidly improving ARDS was 3.9% (11 of 280 patients); no extubation occurred on the first day following intubation. ICU-mortality of patients with rapidly improving ARDS was 54.5%. This low prevalence and high mortality rate of rapidly improving ARDS were consistent across participating sites. Prevalence of persistent severe ARDS was 12.1% and corresponding mortality was 82.4%. CONCLUSIONS: Rapidly improving ARDS was not prevalent and was not associated with good prognosis among patients with COVID-19. This is starkly different from what has been previously reported for patients with ARDS not related to COVID-19. Our results on both rapidly improving ARDS and persistent severe ARDS may contribute to our understanding of trajectory of ARDS and its association with prognosis in patients with COVID-19.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , COVID-19/diagnóstico , COVID-19/terapia , Humanos , Unidades de Terapia Intensiva , Oxigênio , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/epidemiologia , Síndrome do Desconforto Respiratório/terapia
8.
Crit Care ; 26(1): 197, 2022 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-35786445

RESUMO

BACKGROUND: Sepsis is a heterogeneous syndrome, and the identification of clinical subphenotypes is essential. Although organ dysfunction is a defining element of sepsis, subphenotypes of differential trajectory are not well studied. We sought to identify distinct Sequential Organ Failure Assessment (SOFA) score trajectory-based subphenotypes in sepsis. METHODS: We created 72-h SOFA score trajectories in patients with sepsis from four diverse intensive care unit (ICU) cohorts. We then used dynamic time warping (DTW) to compute heterogeneous SOFA trajectory similarities and hierarchical agglomerative clustering (HAC) to identify trajectory-based subphenotypes. Patient characteristics were compared between subphenotypes and a random forest model was developed to predict subphenotype membership at 6 and 24 h after being admitted to the ICU. The model was tested on three validation cohorts. Sensitivity analyses were performed with alternative clustering methodologies. RESULTS: A total of 4678, 3665, 12,282, and 4804 unique sepsis patients were included in development and three validation cohorts, respectively. Four subphenotypes were identified in the development cohort: Rapidly Worsening (n = 612, 13.1%), Delayed Worsening (n = 960, 20.5%), Rapidly Improving (n = 1932, 41.3%), and Delayed Improving (n = 1174, 25.1%). Baseline characteristics, including the pattern of organ dysfunction, varied between subphenotypes. Rapidly Worsening was defined by a higher comorbidity burden, acidosis, and visceral organ dysfunction. Rapidly Improving was defined by vasopressor use without acidosis. Outcomes differed across the subphenotypes, Rapidly Worsening had the highest in-hospital mortality (28.3%, P-value < 0.001), despite a lower SOFA (mean: 4.5) at ICU admission compared to Rapidly Improving (mortality:5.5%, mean SOFA: 5.5). An overall prediction accuracy of 0.78 (95% CI, [0.77, 0.8]) was obtained at 6 h after ICU admission, which increased to 0.87 (95% CI, [0.86, 0.88]) at 24 h. Similar subphenotypes were replicated in three validation cohorts. The majority of patients with sepsis have an improving phenotype with a lower mortality risk; however, they make up over 20% of all deaths due to their larger numbers. CONCLUSIONS: Four novel, clinically-defined, trajectory-based sepsis subphenotypes were identified and validated. Identifying trajectory-based subphenotypes has immediate implications for the powering and predictive enrichment of clinical trials. Understanding the pathophysiology of these differential trajectories may reveal unanticipated therapeutic targets and identify more precise populations and endpoints for clinical trials.


Assuntos
Insuficiência de Múltiplos Órgãos , Sepse , Mortalidade Hospitalar , Hospitalização , Humanos , Unidades de Terapia Intensiva
9.
BMC Anesthesiol ; 22(1): 209, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35794523

RESUMO

BACKGROUND: The coronavirus-2019 (COVID-19) pandemic highlighted the unfortunate reality that many hospitals have insufficient intensive care unit (ICU) capacity to meet massive, unanticipated increases in demand. To drastically increase ICU capacity, NewYork-Presbyterian/Weill Cornell Medical Center modified its existing operating rooms and post-anaesthesia care units during the initial expansion phase to accommodate the surge of critically ill patients. METHODS: This retrospective chart review examined patient care in non-standard Expansion ICUs as compared to standard ICUs. We compared clinical data between the two settings to determine whether the expeditious development and deployment of critical care resources during an evolving medical crisis could provide appropriate care. RESULTS: Sixty-six patients were admitted to Expansion ICUs from March 1st to April 30th, 2020 and 343 were admitted to standard ICUs. Most patients were male (70%), White (30%), 45-64 years old (35%), non-smokers (73%), had hypertension (58%), and were hospitalized for a median of 40 days. For patients that died, there was no difference in treatment management, but the Expansion cohort had a higher median ICU length of stay (q = 0.037) and ventilatory length (q = 0.015). The cohorts had similar rates of discharge to home, but the Expansion ICU cohort had higher rates of discharge to a rehabilitation facility and overall lower mortality. CONCLUSIONS: We found no significantly worse outcomes for the Expansion ICU cohort compared to the standard ICU cohort at our institution during the COVID-19 pandemic, which demonstrates the feasibility of providing safe and effective care for patients in an Expansion ICU.


Assuntos
COVID-19 , Pandemias , Cuidados Críticos , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
10.
J Am Soc Nephrol ; 32(1): 161-176, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33067383

RESUMO

BACKGROUND: AKI is a common sequela of coronavirus disease 2019 (COVID-19). However, few studies have focused on AKI treated with RRT (AKI-RRT). METHODS: We conducted a multicenter cohort study of 3099 critically ill adults with COVID-19 admitted to intensive care units (ICUs) at 67 hospitals across the United States. We used multivariable logistic regression to identify patient-and hospital-level risk factors for AKI-RRT and to examine risk factors for 28-day mortality among such patients. RESULTS: A total of 637 of 3099 patients (20.6%) developed AKI-RRT within 14 days of ICU admission, 350 of whom (54.9%) died within 28 days of ICU admission. Patient-level risk factors for AKI-RRT included CKD, men, non-White race, hypertension, diabetes mellitus, higher body mass index, higher d-dimer, and greater severity of hypoxemia on ICU admission. Predictors of 28-day mortality in patients with AKI-RRT were older age, severe oliguria, and admission to a hospital with fewer ICU beds or one with greater regional density of COVID-19. At the end of a median follow-up of 17 days (range, 1-123 days), 403 of the 637 patients (63.3%) with AKI-RRT had died, 216 (33.9%) were discharged, and 18 (2.8%) remained hospitalized. Of the 216 patients discharged, 73 (33.8%) remained RRT dependent at discharge, and 39 (18.1%) remained RRT dependent 60 days after ICU admission. CONCLUSIONS: AKI-RRT is common among critically ill patients with COVID-19 and is associated with a hospital mortality rate of >60%. Among those who survive to discharge, one in three still depends on RRT at discharge, and one in six remains RRT dependent 60 days after ICU admission.


Assuntos
Injúria Renal Aguda/terapia , Injúria Renal Aguda/virologia , COVID-19/complicações , Cuidados Críticos , Terapia de Substituição Renal , Injúria Renal Aguda/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/mortalidade , COVID-19/terapia , Estudos de Coortes , Feminino , Mortalidade Hospitalar , Hospitalização , Humanos , Incidência , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Taxa de Sobrevida , Estados Unidos , Adulto Jovem
11.
Ann Surg ; 273(3): 403-409, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32889885

RESUMO

OBJECTIVE: The aim of this study was to report the safety, efficacy, and early results of tracheostomy in patients with COVID-19 and determine whether differences exist between percutaneous and open methods. SUMMARY BACKGROUND DATA: Prolonged respiratory failure is common in symptomatic patients with COVID-19, the disease process caused by infection with the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Tracheostomy, although posing potential risk to the operative team and other healthcare workers, may be beneficial for safe weaning of sedation and ventilator support. However, short- and long-term outcomes remain largely unknown. METHODS: A prospectively collected database of patients with COVID-19 undergoing tracheostomy at a major medical center in New York City between April 4 and April 30, 2020 was reviewed. The primary endpoint was need for continued mechanical ventilation. Secondary outcomes included complication rates, sedation weaning, and need for intensive care unit (ICU) level of care. Patient characteristics, perioperative conditions, and outcomes between percutaneous and open groups were analyzed. RESULTS: During the study period, 67 consecutive patients underwent tracheostomy, including 48 males and 19 females with a median age of 66 years [interquartile range (IQR) 52-72]. Two surgeons alternated techniques, with 35 tracheostomies performed percutaneously and 32 via an open approach. The median time from intubation to tracheostomy was 23 days (IQR 20-26). At a median follow-up of 26 days, 52 patients (78%) no longer required mechanical ventilation and 58 patients (87%) were off continuous sedation. Five patients (7.5%) died of systemic causes. There were 11 total complications (16%) in 10 patients, most of which involved minor bleeding. There were no significant differences in outcomes between percutaneous and open methods. CONCLUSIONS: Tracheostomy under apneic conditions by either percutaneous or open technique can be safely performed in patients with respiratory failure due to COVID-19. Tracheostomy facilitated weaning from continuous intravenous sedation and mechanical ventilation. Continued follow-up of these patients to ascertain long-term outcome data is ongoing.


Assuntos
COVID-19/terapia , Cuidados Críticos , Complicações Pós-Operatórias/epidemiologia , Respiração Artificial , Traqueostomia/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/complicações , COVID-19/mortalidade , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque , Taxa de Sobrevida , Traqueostomia/métodos
12.
Thorax ; 76(12): 1176-1185, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33863829

RESUMO

BACKGROUND: Although acute respiratory distress syndrome (ARDS) is associated with high mortality, its direct causal link with death is unclear. Clarifying this link is important to justify costly research on prevention of ARDS. OBJECTIVE: To estimate the attributable mortality, if any, of ARDS. DESIGN: First, we performed a systematic review and meta-analysis of observational studies reporting mortality of critically ill patients with and without ARDS matched for underlying risk factor. Next, we conducted a survival analysis of prospectively collected patient-level data from subjects enrolled in three intensive care unit (ICU) cohorts to estimate the attributable mortality of critically ill septic patients with and without ARDS using a novel causal inference method. RESULTS: In the meta-analysis, 44 studies (47 cohorts) involving 56 081 critically ill patients were included. Mortality was higher in patients with versus without ARDS (risk ratio 2.48, 95% CI 1.86 to 3.30; p<0.001) with a numerically stronger association between ARDS and mortality in trauma than sepsis. In the survival analysis of three ICU cohorts enrolling 1203 critically ill patients, 658 septic patients were included. After controlling for confounders, ARDS was found to increase the mortality rate by 15% (95% CI 3% to 26%; p=0.015). Significant increases in mortality were seen for severe (23%, 95% CI 3% to 44%; p=0.028) and moderate (16%, 95% CI 2% to 31%; p=0.031), but not for mild ARDS. CONCLUSIONS: ARDS has a direct causal link with mortality. Our findings provide information about the extent to which continued funding of ARDS prevention trials has potential to impart survival benefit. PROSPERO REGISTRATION NUMBER: CRD42017078313.


Assuntos
Síndrome do Desconforto Respiratório , Estado Terminal , Mortalidade Hospitalar , Humanos , Unidades de Terapia Intensiva , Análise de Sobrevida
13.
Eur Respir J ; 57(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33243840

RESUMO

Influenza epidemics remain a leading cause of morbidity and mortality worldwide. In the current study, we investigated the impact of chronological ageing on tryptophan metabolism in response to influenza infection.Examination of metabolites present in plasma collected from critically ill patients identified tryptophan metabolism as an important metabolic pathway utilised specifically in response to influenza. Using a murine model of influenza infection to further these findings illustrated that there was decreased production of kynurenine in aged lung in an indoleamine-pyrrole 2,3-dioxygenase-dependent manner that was associated with increased inflammatory and diminished regulatory responses. Specifically, within the first 7 days of influenza, there was a decrease in kynurenine pathway mediated metabolism of tryptophan, which resulted in a subsequent increase in ketone body catabolism in aged alveolar macrophages. Treatment of aged mice with mitoquinol, a mitochondrial targeted antioxidant, improved mitochondrial function and restored tryptophan metabolism.Taken together, our data provide additional evidence as to why older persons are more susceptible to influenza and suggest a possible therapeutic to improve immunometabolic responses in this population.


Assuntos
Influenza Humana , Triptofano , Idoso , Idoso de 80 Anos ou mais , Animais , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase , Cinurenina , Pulmão , Camundongos
14.
Crit Care Med ; 49(7): 1026-1037, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33595960

RESUMO

OBJECTIVES: Therapies for patients with respiratory failure from coronavirus disease 2019 are urgently needed. Early implementation of prone positioning ventilation improves survival in patients with acute respiratory distress syndrome, but studies examining the effect of proning on survival in patients with coronavirus disease 2019 are lacking. Our objective was to estimate the effect of early proning initiation on survival in patients with coronavirus disease 2019-associated respiratory failure. DESIGN: Data were derived from the Study of the Treatment and Outcomes in Critically Ill Patients with coronavirus disease 2019, a multicenter cohort study of critically ill adults with coronavirus disease 2019 admitted to 68 U.S. hospitals. Using these data, we emulated a target trial of prone positioning ventilation by categorizing mechanically ventilated hypoxemic (ratio of Pao2 over the corresponding Fio2 ≤ 200 mm Hg) patients as having been initiated on proning or not within 2 days of ICU admission. We fit an inverse probability-weighted Cox model to estimate the mortality hazard ratio for early proning versus no early proning. Patients were followed until death, hospital discharge, or end of follow-up. SETTING: ICUs at 68 U.S. sites. PATIENTS: Critically ill adults with laboratory-confirmed coronavirus disease 2019 receiving invasive mechanical ventilation with ratio of Pao2 over the corresponding Fio2 less than or equal to 200 mm Hg. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among 2,338 eligible patients, 702 (30.0%) were proned within the first 2 days of ICU admission. After inverse probability weighting, baseline and severity of illness characteristics were well-balanced between groups. A total of 1,017 (43.5%) of the 2,338 patients were discharged alive, 1,101 (47.1%) died, and 220 (9.4%) were still hospitalized at last follow-up. Patients proned within the first 2 days of ICU admission had a lower adjusted risk of death compared with nonproned patients (hazard ratio, 0.84; 95% CI, 0.73-0.97). CONCLUSIONS: In-hospital mortality was lower in mechanically ventilated hypoxemic patients with coronavirus disease 2019 treated with early proning compared with patients whose treatment did not include early proning.


Assuntos
COVID-19/complicações , Hipóxia/terapia , Posicionamento do Paciente , Decúbito Ventral , Respiração Artificial , Insuficiência Respiratória/etiologia , Idoso , Estudos de Coortes , Feminino , Mortalidade Hospitalar , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , Análise de Sobrevida , Tempo para o Tratamento , Estados Unidos/epidemiologia
15.
J Biomed Inform ; 118: 103789, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33862230

RESUMO

Patients treated in an intensive care unit (ICU) are critically ill and require life-sustaining organ failure support. Existing critical care data resources are limited to a select number of institutions, contain only ICU data, and do not enable the study of local changes in care patterns. To address these limitations, we developed the Critical carE Database for Advanced Research (CEDAR), a method for automating extraction and transformation of data from an electronic health record (EHR) system. Compared to an existing gold standard of manually collected data at our institution, CEDAR was statistically similar in most measures, including patient demographics and sepsis-related organ failure assessment (SOFA) scores. Additionally, CEDAR automated data extraction obviated the need for manual collection of 550 variables. Critically, during the spring 2020 COVID-19 surge in New York City, a modified version of CEDAR supported pandemic response efforts, including clinical operations and research. Other academic medical centers may find value in using the CEDAR method to automate data extraction from EHR systems to support ICU activities.


Assuntos
COVID-19 , Bases de Dados Factuais , Registros Eletrônicos de Saúde , Unidades de Terapia Intensiva , Idoso , Idoso de 80 Anos ou mais , Cuidados Críticos , Estado Terminal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque
16.
Clin Immunol ; 219: 108555, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32771488

RESUMO

Respiratory failure and acute kidney injury (AKI) are associated with high mortality in SARS-CoV-2-associated Coronavirus disease 2019 (COVID-19). These manifestations are linked to a hypercoaguable, pro-inflammatory state with persistent, systemic complement activation. Three critical COVID-19 patients recalcitrant to multiple interventions had skin biopsies documenting deposition of the terminal complement component C5b-9, the lectin complement pathway enzyme MASP2, and C4d in microvascular endothelium. Administration of anti-C5 monoclonal antibody eculizumab led to a marked decline in D-dimers and neutrophil counts in all three cases, and normalization of liver functions and creatinine in two. One patient with severe heart failure and AKI had a complete remission. The other two individuals had partial remissions, one with resolution of his AKI but ultimately succumbing to respiratory failure, and another with a significant decline in FiO2 requirements, but persistent renal failure. In conclusion, anti-complement therapy may be beneficial in at least some patients with critical COVID-19.


Assuntos
Injúria Renal Aguda/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Betacoronavirus/patogenicidade , Inativadores do Complemento/uso terapêutico , Infecções por Coronavirus/imunologia , Síndrome da Liberação de Citocina/imunologia , Pneumonia Viral/imunologia , Síndrome Respiratória Aguda Grave/imunologia , Injúria Renal Aguda/complicações , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/virologia , Adulto , Betacoronavirus/imunologia , Biomarcadores/metabolismo , COVID-19 , Ativação do Complemento/efeitos dos fármacos , Complemento C4b/antagonistas & inibidores , Complemento C5/antagonistas & inibidores , Complexo de Ataque à Membrana do Sistema Complemento/antagonistas & inibidores , Infecções por Coronavirus/complicações , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Síndrome da Liberação de Citocina/complicações , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/virologia , Feminino , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Humanos , Imunidade Humoral/efeitos dos fármacos , Masculino , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/imunologia , Pessoa de Meia-Idade , Neutrófilos/imunologia , Neutrófilos/patologia , Pandemias , Fragmentos de Peptídeos/antagonistas & inibidores , Pneumonia Viral/complicações , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/complicações , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Síndrome Respiratória Aguda Grave/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA