Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276733

RESUMO

THz radiation emitted by ferromagnetic/non-magnetic bilayers is a new emergent field in ultra-fast spin physics phenomena with a lot of potential for technological applications in the terahertz (THz) region of the electromagnetic spectrum. The role of antiferromagnetic layers in the THz emission process is being heavily investigated at the moment. In this work, we fabricate trilayers in the form of Co/CoO/Pt and Ni/NiO/Pt with the aim of studying the magnetic properties and probing the role of very thin antiferromagnetic interlayers like NiO and CoO in transporting ultrafast spin current. First, we reveal the static magnetic properties of the samples by using temperature-dependent Squid magnetometry and then we quantify the dynamic properties with the help of ferromagnetic resonance spectroscopy. We show magnetization reversal that has large exchange bias values and we extract enhanced damping values for the trilayers. THz time-domain spectroscopy examines the influence of the antiferromagnetic interlayer in the THz emission, showing that the NiO interlayer in particular is able to transport spin current.

2.
iScience ; 25(5): 104319, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35602944

RESUMO

Recent developments in nanomagnetism and spintronics have enabled the use of ultrafast spin physics for terahertz (THz) emission. Spintronic THz emitters, consisting of ferromagnetic (FM)/non-magnetic (NM) thin film heterostructures, have demonstrated impressive properties for the use in THz spectroscopy and have great potential in scientific and industrial applications. In this work, we focus on the impact of the FM/NM interface on the THz emission by investigating Fe/Pt bilayers with engineered interfaces. In particular, we intentionally modify the Fe/Pt interface by inserting an ordered L10-FePt alloy interlayer. Subsequently, we establish that a Fe/L10-FePt (2 nm)/Pt configuration is significantly superior to a Fe/Pt bilayer structure, regarding THz emission amplitude. The latter depends on the extent of alloying on either side of the interface. The unique trilayer structure opens new perspectives in terms of material choices for the next generation of spintronic THz emitters.

3.
iScience ; 25(7): 104615, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35800756

RESUMO

Terahertz emission from ferromagnetic/non-magnetic spintronic heterostructures had been demonstrated as pump wavelength-independent. We report, however, the pump wavelength dependence of terahertz emission from an optimized Fe/Pt spintronic bilayer on MgO substrate. Maximum terahertz generation per total pump power was observed in the 1200- to 1800-nm pump wavelength range, and a marked decrease in the terahertz emission efficiency beyond 2500 nm (pump photon energies <0.5 eV) suggests a ∼0.35-eV threshold pump photon energy for effective spintronic terahertz emission. The inferred threshold is supported by previous theoretical results on the onset energy of significant spin-filtering at the Fe-Pt interface, and confirmed by Fe/Pt electronic structure calculations in this present work. The results of terahertz time-domain emission spectroscopy show the sensitivity of spintronic terahertz emission to both the optical absorptance of the heterostructure and the energy-dependent spin transport, as dictated by the properties of the metallic thin films.

4.
Sci Rep ; 9(1): 13348, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527771

RESUMO

Spintronic ferromagnetic/non-magnetic heterostructures are novel sources for the generation of THz radiation based on spin-to-charge conversion in the layers. The key technological and scientific challenge of THz spintronic emitters is to increase their intensity and frequency bandwidth. Our work reveals the factors to engineer spintronic Terahertz generation by introducing the scattering lifetime and the interface transmission for spin polarized, non-equilibrium electrons. We clarify the influence of the electron-defect scattering lifetime on the spectral shape and the interface transmission on the THz amplitude, and how this is linked to structural defects of bilayer emitters. The results of our study define a roadmap of the properties of emitted as well as detected THz-pulse shapes and spectra that is essential for future applications of metallic spintronic THz emitters.

5.
Sci Rep ; 8(1): 1311, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358715

RESUMO

We report on generation of pulsed broadband terahertz radiation utilizing the inverse spin hall effect in Fe/Pt bilayers on MgO and sapphire substrates. The emitter was optimized with respect to layer thickness, growth parameters, substrates and geometrical arrangement. The experimentally determined optimum layer thicknesses were in qualitative agreement with simulations of the spin current induced in the ferromagnetic layer. Our model takes into account generation of spin polarization, spin diffusion and accumulation in Fe and Pt and electrical as well as optical properties of the bilayer samples. Using the device in a counterintuitive orientation a Si lens was attached to increase the collection efficiency of the emitter. The optimized emitter provided a bandwidth of up to 8 THz which was mainly limited by the low-temperature-grown GaAs (LT-GaAS) photoconductive antenna used as detector and the pulse length of the pump laser. The THz pulse length was as short as 220 fs for a sub 100 fs pulse length of the 800 nm pump laser. Average pump powers as low as 25 mW (at a repetition rate of 75 MHz) have been used for terahertz generation. This and the general performance make the spintronic terahertz emitter compatible with established emitters based on optical rectification in nonlinear crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA