RESUMO
Characterization of normal breast stem cells is important for understanding their role in breast development and in breast cancer. However, the identity of these cells is a subject of controversy and their localization in the breast epithelium is not known. In this study, we utilized a novel approach to analyze the morphogenesis of mammary lobules, by combining one-dimensional theoretical models and computer-generated 3D fractals. Comparing predictions of these models with immunohistochemical analysis of tissue sections for candidate stem cell markers, we defined distinct areas where stem cells reside in the mammary lobule. An increased representation of stem cells was found in smaller, less developed lobules compared to larger, more mature lobules, with marked differences in the gland of nulliparous versus parous women and that of BRCA1/2 mutation carriers versus non-carriers.
Assuntos
Diferenciação Celular , Glândulas Mamárias Humanas , Organogênese , Células-Tronco/citologia , Células-Tronco/metabolismo , Biomarcadores/metabolismo , Epitélio/metabolismo , Feminino , Humanos , Modelos Biológicos , Técnicas de Cultura de TecidosRESUMO
Delegates at scientific meetings can come from diverse backgrounds and use very different methods in their research. Promoting interactions between these 'distant' delegates is challenging but such interactions could lead to novel interdisciplinary collaborations and unexpected breakthroughs. We have developed a network-based 'speed dating' approach that allows us to initiate such distant interactions by pairing every delegate with another delegate who might be of interest to them, but whom they might never have encountered otherwise. Here we describe our approach and its algorithmic implementation.