Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nano Lett ; 23(23): 11211-11218, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38029285

RESUMO

The two-dimensional electron system (2DES) located at the surface of strontium titanate (STO) and at several other STO-based interfaces has been an established platform for the study of novel physical phenomena since its discovery. Here we report how the interfacing of STO and tetracyanoquinodimethane (TCNQ) results in a charge transfer that depletes the number of free carriers at the STO surface, with a strong impact on its electronic structure. Our study paves the way for efficient tuning of the electronic properties, which promises novel applications in the framework of oxide/organic-based electronics.

2.
Molecules ; 28(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446880

RESUMO

The behavior of nitrosyl chloride (ClNO) exposed to ionizing radiation was studied by direct probing valence-shell electrons in temporal coincidence with ions originating from the fragmentation process of the transient ClNO2+. Such a molecular dication was produced by double photoionization with synchrotron radiation in the 24-70 eV photon energy range. The experiment has been conducted at the Elettra Synchrotron Facility of Basovizza (Trieste, Italy) using a light beam linearly polarized with the direction of the polarization vector parallel to the ClNO molecular beam axis. ClNO molecules crossing the photon beam at right angles in the scattering region are generated by effusive expansion and randomly oriented. The threshold energy for the double ionization of ClNO (30.1 ± 0.1 eV) and six dissociation channels producing NO+/Cl+, N+/Cl+, N+/O+, O+/Cl+, ClN+/O+, NO+/Cl2+ ion pairs, with their relative abundance and threshold energies, have been measured.


Assuntos
Fótons , Síncrotrons , Fenômenos Físicos , Itália
3.
Angew Chem Int Ed Engl ; 62(46): e202311832, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37743324

RESUMO

Self-assembled monolayers (SAMs) of N-heterocyclic olefins (NHOs) have been prepared on Au(111) and their thermal stability, adsorption geometry, and molecular order were characterized by X-ray photoelectron spectroscopy, polarized X-ray absorption spectroscopy, scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. The strong σ-bond character of NHO anchoring to Au induced high geometrical flexibility that enabled a flat-lying adsorption geometry via coordination to a gold adatom. The flat-lying adsorption geometry was utilized to further increase the surface interaction of the NHO monolayer by backbone functionalization with methyl groups that induced high thermal stability and a large impact on work-function values, which outperformed that of N-heterocyclic carbenes. STM measurements, supported by DFT modeling, identified that the NHOs were self-assembled in dimers, trimers, and tetramers constructed of two, three, and four complexes of NHO-Au-adatom. This self-assembly pattern was correlated to strong NHO-Au interactions and steric hindrance between adsorbates, demonstrating the crucial influence of the carbon-metal σ-bond on monolayer properties.

4.
Phys Chem Chem Phys ; 24(21): 12719-12744, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35583960

RESUMO

In this Perspective we present a comprehensive study of the multiple reaction products of metal-free porphyrins (2H-Ps) in contact with the rutile TiO2(110) surface. In the absence of peripheral functionalization with specific linkers, the porphyrin adsorption is driven by the coordination of the two pyrrolic nitrogen atoms of the macrocycle to two consecutive oxygen atoms of the protruding Obr rows via hydrogen bonding. This chemical interaction favours the iminic nitrogen uptake of hydrogen from near surface layers at room temperature, thus yielding a stable acidic porphyrin (4H-P). In addition, a mild annealing (∼100 °C) triggers the incorporation of a Ti atom in the porphyrin macrocycle (self-metalation). We recently demonstrated that such a low temperature reaction is driven by a Lewis base iminic attack, which lowers the energy barriers for the outdiffusion of Ti interstitial atoms (Tiint) [Kremer et al., Appl. Surf. Sci., 2021, 564, 150403]. In the monolayer (ML) range, the porphyrin adsorption site, corresponding to a TiO-TPP configuration, is extremely stable and tetraphenyl-porphyrins (TPPs) may even undergo conformational distortion (flattening) by partial cyclo-dehydrogenation, while remaining anchored to the O rows up to 450 °C [Lovat et al., Nanoscale, 2017, 9, 11694]. Here we show that, upon self-metalation, isolated molecules at low coverage may jump atop the rows of five-fold coordinated Ti atoms (Ti5f). This configuration is associated with the formation of a new coordination complex, Ti-O-Ti5f, as determined by comparison with the deposition of pristine titanyl-porphyrin (TiO-TPP) molecules. The newly established Ti-O-Ti5f anchoring configuration is found to be stable also beyond the TPP flattening reaction. The anchoring of TiO-TPP to the Ti5f rows is, however, susceptible to the cross-talk between phenyls of adjacent molecules, which ultimately drives the TiO-TPP temperature evolution in the ML range along the same pathway followed by 2H-TPP.

5.
Phys Chem Chem Phys ; 24(28): 17077-17087, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35792072

RESUMO

Stabilizing ordered assemblies of molecules represents the first step towards the construction of molecular devices featuring hybrid (organic-inorganic) interfaces where molecules can be easily functionalized in view of specific applications. Molecular layers of planar metal-tetraphenylporphyrins (MTPP) grown on an ultrathin iron oxide [namely Fe(001)-p(1 × 1)O] show indeed a high degree of structural order. The generality of such a picture is tested by exploiting non-planar porphyrins, such as vanadyl-TPP (VOTPP). These molecules feature a VO2+ ion in their center, with the O atom protruding out of the plane of the porphyrin ring. In this work, by employing diffraction, photoemission and X-ray absorption, we prove that non-planar VOTPP can nevertheless form a square and ordered superstructure, where porphyrin molecules lie flat with respect to the underlying substrate. Ab initio density functional theory simulations are used to elucidate the VO bond orientation with respect to the iron substrate.

6.
J Chem Phys ; 157(12): 124306, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36182420

RESUMO

The potential for selective bond breaking of a small molecule was investigated with electron spectroscopy and electron-ion coincidence experiments on ClNO. The electron spectra were measured upon direct valence photoionization and resonant core excitation at the N 1s- and O 1s-edges, followed by the emission of resonant-Auger (RA) electrons. The RA spectra were analyzed with particular emphasis on the assignment of the participator and spectator states. The states are of special relevance for investigating how distinct electronic configurations influence selective bond breaking. The electron-ion coincidence measurements provided branching fractions of the produced ion fragments as a function of electron binding energy. They explicitly demonstrate how the final electronic states created after photoionization and RA decay influence fragmentation. In particular, we observed a significantly different branching fraction for spectator states compared with participator states. In addition, it was also observed that the bonds broken for the spectator states correlate with the antibonding nature of the spectator-electron orbital.

7.
Angew Chem Int Ed Engl ; 61(44): e202210326, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36070193

RESUMO

On-surface chemistry holds the potential for ultimate miniaturization of functional devices. Porphyrins are promising building-blocks in exploring advanced nanoarchitecture concepts. More stable molecular materials of practical interest with improved charge transfer properties can be achieved by covalently interconnecting molecular units. On-surface synthesis allows to construct extended covalent nanostructures at interfaces not conventionally available. Here, we address the synthesis and properties of covalent molecular network composed of interconnected constituents derived from halogenated nickel tetraphenylporphyrin on Au(111). We report that the π-extended two-dimensional material exhibits dispersive electronic features. Concomitantly, the functional Ni cores retain the same single-active site character of their single-molecule counterparts. This opens new pathways when exploiting the high robustness of transition metal cores provided by bottom-up constructed covalent nanomeshes.

8.
Inorg Chem ; 59(10): 7274-7282, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32343896

RESUMO

The photoionization dynamics of OsO4 and RuO4, chosen as model systems of small-size mononuclear heavy-metal complexes, has been theoretically studied by the time-dependent density functional theory (TDDFT). Accurate experimental measurements of photoionization dynamics as a benchmarking test for the theory are reported for the photoelectron asymmetry parameters of outer valence ionizations of OsO4, measured in the 17-90 eV photon energy range. The theoretical results are in good agreement with the available experimental data. The observed dynamical behavior of partial cross sections and asymmetry parameters has been related to both the coupling to the continuum of discrete excited states, giving strong modulations in the photon energy dependency, and the atomic composition of the initial ionized states, which determines the rate of decay of ionization probability for increasing excitation energies. Overall, an extensive analysis of the photoionization dynamics for valence and core orbitals is presented, showing good agreement with all the available experimental data. This provides confidence for the validity of the TDDFT approach in describing photoionization of heavy transition element compounds, with the perspective of being used for larger systems. Further experimental work is suggested for RuO4 to gather evidence of the sensitivity of the theoretical method to the nature of the metal atom.

9.
J Chem Phys ; 149(16): 164305, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30384723

RESUMO

The fragmentation of ClNO upon resonant core-electron excitation to the LUMO and LUMO+1 orbitals at the N and O K-edges is investigated. The produced fragment ions were detected in coincidence with a position sensitive ion time-of-flight detector which enables deduction of the angular distribution of the ions. This facilitates a comparison between the two resonances and the two K-edges with respect to fragmentation time, transition dipole moment orientation, fragment yield of single-ion and ion-pair channels, and fragmentation mechanisms. We observe significant correlations between the core-excited site and the location of the bonds that are broken, as well as the dissociation time. Moreover, we observe preferential cleavage of specific bonds upon excitation to the LUMO and LUMO+1 states which can be attributed to their orbital character.

10.
J Chem Phys ; 148(11): 114302, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29566526

RESUMO

Propylene oxide, a favorite target of experimental and theoretical studies of circular dichroism, was recently discovered in interstellar space, further amplifying the attention to its role in the current debate on protobiological homochirality. In the present work, a photoelectron-photoion-photoion coincidence technique, using an ion-imaging detector and tunable synchrotron radiation in the 18.0-37.0 eV energy range, permits us (i) to observe six double ionization fragmentation channels, their relative yields being accounted for about two-thirds by the couple (C2H4+, CH2O+) and one-fifth by (C2H3+, CH3O+); (ii) to measure thresholds for their openings as a function of photon energy; and (iii) to unravel a pronounced bimodality for a kinetic-energy-released distribution, fingerprint of competitive non-adiabatic mechanisms.

11.
Phys Rev Lett ; 118(10): 103001, 2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28339240

RESUMO

We report on experiments which show that C_{60} can ionize in an indirect, quasithermal boiloff process after absorption of a single photon. The process involves a large number of incoherently excited valence electrons and yields electron spectra with a Boltzmann distribution with temperatures exceeding 10^{4} K. It is expected to be present for other molecules and clusters with a comparatively large number of valence electrons. The astrophysical consequences are briefly discussed.

12.
Phys Chem Chem Phys ; 18(3): 2210-8, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26691541

RESUMO

Experimental Near-Edge X-ray Absorption Fine-Structure (NEXAFS) spectra of N-methyltrifluoroacetamide (FNMA), which is a peptide model system, measured at the C, N, O and F K-edges are reported. The features in the spectra have been assigned by Static-Exchange (STEX) calculations. Using the same method, we have also assigned previously measured NEXAFS spectra of another peptide model system, N-methylacetamide (NMA). To facilitate the NEXAFS feature assignments, X-ray Photoelectron Spectroscopy (XPS) measurements for NMA and FNMA have been carried out with the aim of obtaining the 1s electron ionization potentials, which are compared with the values predicted by our Hartree-Fock (ΔHF) and Multi Configuration Self Consistent Field (ΔMCSCF) calculations. We also demonstrate an approach to compensate for screening effects that are neglected in the STEX method. Ion yield measurements of FNMA associated with the excitation of several C, N, O, and F K-shell pre-edge resonances have revealed site-specific fragmentation in some cases which we interpret with the aid of our theoretical calculations.

13.
J Phys Chem A ; 120(27): 5220-9, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27045948

RESUMO

In this work, hydrogen peroxide has been studied with threshold photoelectron (TPE) spectroscopy and photoelectron (PE) spectroscopy. The TPE spectrum has been recorded in the 10.0-21.0 eV ionization energy region, and the PE spectrum has been recorded at 21.22 eV photon energy. Five bands have been observed which have been assigned on the basis of UCCSD(T)-F12/VQZ-F12 and IP-EOM CCSD calculations. Vibrational structure has only been resolved in the TPE spectrum of the first band, associated with the X̃(2)Bg H2O2(+) ← X̃(1)A H2O2 ionization, on its low energy side. This structure is assigned with the help of harmonic Franck-Condon factor calculations that use the UCCSD(T)-F12a/VQZ-F12 computed adiabatic ionization energy (AIE), and UCCSD(T)-F12a/VQZ-F12 computed equilibrium geometric parameters and harmonic vibrational frequencies for the H2O2 X̃(1)A state and the H2O2(+) X̃(2)Bg state. These calculations show that the main vibrational structure on the leading edge of the first TPE band is in the O-O stretching mode (ω3) and the HOOH deformation mode (ω4), and comparison of the simulated spectrum to the experimental spectrum gives the first AIE of H2O2 as (10.685 ± 0.005) eV and ω4 = (850 ± 30) and ω3 = (1340 ± 30) cm(-1) in the X̃(2)Bg state of H2O2(+). Contributions from ionization of vibrationally excited levels in the torsion mode have been identified in the TPE spectrum of the first band and the need for a vibrationally resolved TPE spectrum from vibrationally cooled molecules, as well as higher level Franck-Condon factors than performed in this work, is emphasized.

14.
J Chem Phys ; 144(24): 244310, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27369518

RESUMO

Near-edge X-ray absorption fine-structure (NEXAFS) spectra measured at the C, N, and O K-edges for three molecules containing the amide moiety, N-methylformamide (HCONHCH3), N,N-dimethylformamide (HCON(CH3)2), and N,N-dimethylacetamide (CH3CON(CH3)2) are presented. These molecules have similar structures and differ by the number of methyl groups located at the molecular ends. The fragmentation of these molecules after resonant excitation at different K-edge resonances is also investigated, using a 3D-ion imaging time-of-flight spectrometer. A comparison between the molecules with respect to the relative contributions of the fragments created upon excitation at distinct resonances reveals site-specific fragmentation. Further information about the character of the core-excitation and dissociation process is obtained from the angular distributions of the ion fragments.

15.
Phys Chem Chem Phys ; 17(14): 9040-8, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25754872

RESUMO

The electronic structure of nitrosyl chloride (ClNO) has been investigated in the gas phase by X-ray Photoelectron (XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy at the Cl 2p, Cl 2s, N 1s and O 1s edges in a combined experimental and theoretical study. The theoretical calculations at different levels of approximation predict ionization potential values in good agreement with the experimental data and allow us to assign the main features of the absorption spectra. An unexpected failure of the density functional model is, however, observed in the calculation of the Cl 2s binding energy, which is related to a large self-interaction error. Largely different photoabsorption cross-section patterns are experimentally observed in core excitations from the investigated quantum shells (n = 1, 2). This finding is confirmed by the oscillator strength distributions calculated at different absorption edges; in the case of the n = 2 shell the bands below the threshold are extremely weak and most of the absorption intensity is due to excitations in the continuum.


Assuntos
Modelos Teóricos , Óxidos de Nitrogênio/química , Espectroscopia Fotoeletrônica/métodos , Espectroscopia por Absorção de Raios X/métodos , Modelos Moleculares , Estrutura Molecular
16.
J Chem Phys ; 143(13): 134302, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26450309

RESUMO

Fragmentation processes of SO2 following excitation of the six main O 1s pre-edge resonances, as well as above the ionization threshold and below the resonances, are studied using a position-sensitive time-of-flight ion imaging detector, and the associated dissociation branching ratios and break-up dynamics are determined. In order to distinguish between the O(+) and S(2+) fragments of equal mass-to-charge ratio, the measurements have been performed with the isotopically enriched S(18)O2 sample. By analysis of the complete set of the fragment momentum vectors, the ß values for the fragments originating from the SO(+) + O(+) break-up and the kinetic energy release for fragmentation channels of both SO2 (2+) and SO2 (3+) parent ions are determined. We also present results on the three-body break-up dynamics.

17.
Nanoscale ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895745

RESUMO

Coordination polymers may be synthesized by linear bridging ligands to metal ions with conventional chemistry methods (e.g. in solution). Such complexes can be hardly brought onto a substrate with the chemical, spatial and geometrical homogeneity required for device integration. Instead, we follow an in situ synthesis approach, where the anchoring points are provided by a monolayer of metal(II)-tetraphenylporphyrin (M-TPP, M = Cu, Zn, Co) grown in vacuum on the rutile-TiO2(110) surface. We probed the metal affinity to axial coordination by further deposition of symmetric dipyridyl-naphthalenediimide (DPNDI). By NEXAFS linear polarization dichroism, we show that DPNDI stands up on Zn- and Co-TPP thanks to axial coordination, whereas it lies down on the substrate for Cu-TPP. Calculations for a model pyridine ligand predict strong binding to Zn and Co cations, whose interaction with the O anions underneath is disrupted by surface trans effect. The weaker interactions between pyridine and Cu-TPP are then overcome by the strong attraction between TiO2 and DPNDI. The binding sites exposed by the homeotropic alignment of the ditopic DPNDI ligand on Zn- and Co-TPP are the foundations to grow coordination polymers preserving the lateral coherence of the basal layer.

18.
Nanoscale ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895999

RESUMO

Metal-porphyrins are studied intensively due their potential applications, deriving from the variety of electronic and chemical properties, tunable by selecting metal centers and functional groups. Metalation, de- and trans-metalation processes are fundamental in this sense to investigate both the synthesis and the stability of these molecular building blocks. More specifically, Pd coordination in tetrapyrroles revealed to be potentially interesting in the fields of cancer therapy, drug delivery and light harvesting. Thus, we focused on the stability of palladium tetraphenyl porphyrins (PdTPPs) on a copper surface by means of combined spectroscopy and microscopy approaches. We find that PdTPPs undergo coverage-dependent trans-metalation accompanied by steric rearrangements already at room temperature, and fully trans-metalate to CuTPPs upon mild annealing. Side reactions such as (cyclo)-dehydrogenation and structural reorganization affect the molecular layer, with Pd-Cu alloying and segregation occurring at higher temperature. Instead, oxygen passivation of the Cu support prevents the metal-involving reactions, thus preserving the layer and increasing the chemical and temperature stability of the Pd porphyrins.

19.
Adv Sci (Weinh) ; 10(22): e2300223, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37199683

RESUMO

Molecule-based functional devices may take advantage of surface-mediated spin state bistability. Whereas different spin states in conventional spin crossover complexes are only accessible at temperatures well below room temperature, and the lifetimes of the high-spin state are relatively short, a different behavior exhibited by prototypical nickel phthalocyanine is shown here. Direct interaction of the organometallic complex with a copper metal electrode mediates the coexistence of a high spin and a low spin state within the 2D molecular array. The spin state bistability is extremely non-volatile, since no external stimuli are required to preserve it. It originates from the surface-induced axial displacement of the functional nickel cores, which generates two stable local minima. Spin state unlocking and the full conversion to the low spin state are only possible by a high temperature stimulus. This spin state transition is accompanied by distinct changes in the molecular electronic structure that might facilitate the state readout at room temperature, as evidenced by valence spectroscopy. The non-volatility of the high spin state up to elevated temperatures and the controllable spin bistability render the system extremely intriguing for applications in molecule-based information storage devices.

20.
ACS Nano ; 17(24): 25301-25310, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38085812

RESUMO

We deposit azafullerene C59N• radicals in a vacuum on the Au(111) surface for layer thicknesses between 0.35 and 2.1 monolayers (ML). The layers are characterized using X-ray photoemission (XPS) and X-ray absorption fine structure (NEXAFS) spectroscopy, low-temperature scanning tunneling microscopy (STM), and by density functional calculations (DFT). The singly unoccupied C59N orbital (SUMO) has been identified in the N 1s NEXAFS/XPS spectra of C59N layers as a spectroscopic fingerprint of the molecular radical state. At low molecular coverages (up to 1 ML), films of monomeric C59N are stabilized with the nonbonded carbon orbital neighboring the nitrogen oriented toward the Au substrate, whereas in-plane intermolecular coupling into diamagnetic (C59N)2 dimers takes over toward the completion of the second layer. By following the C59N• SUMO peak intensity with increasing molecular coverage, we identify an intermediate high-spin-density phase between 1 and 2 ML, where uncoupled C59N• monomers in the second layer with pronounced radical character are formed. We argue that the C59N• radical stabilization of this supramonolayer phase of monomers is achieved by suppressed coupling to the substrate. This results from molecular isolation on top of the passivating azafullerene contact layer, which can be explored for molecular radical state stabilization and positioning on solid substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA