Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(4): 6597-6608, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439359

RESUMO

High temporal resolution is essential for ultra-fast pump-probe experiments. Arrival time jitter and drift measurements, as well as their control, become critical especially when combining XUV or X-ray free-electron lasers (FELs) with optical lasers due to the large scale of such facilities and their distinct pulse generation processes. This paper presents the application of a laser pulse arrival time monitor that actively corrects the arrival time of an optical laser relative to the FEL's main optical clock. Combined with post-analysis single pulse jitter correction this new approach improves the temporal resolution for pump-probe experiments significantly. Benchmark measurements on photo-ionization of xenon atoms performed at FLASH beamline FL26, demonstrate a sub-50 fs FWHM overall temporal resolution.

2.
J Synchrotron Radiat ; 28(Pt 1): 36-43, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399550

RESUMO

This paper reports on nonlinear spectral broadening of 1.1 ps pulses in a gas-filled multi-pass cell to generate sub-100 fs optical pulses at 1030 nm and 515 nm at pulse energies of 0.8 mJ and 225 µJ, respectively, for pump-probe experiments at the free-electron laser FLASH. Combining a 100 kHz Yb:YAG laser with 180 W in-burst average power and a post-compression platform enables reaching simultaneously high average powers and short pulse durations for high-repetition-rate FEL pump-probe experiments.

3.
J Chem Phys ; 149(20): 204313, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30501230

RESUMO

The photodissociation dynamics of CH3I and CH2ClI at 272 nm were investigated by time-resolved Coulomb explosion imaging, with an intense non-resonant 815 nm probe pulse. Fragment ion momenta over a wide m/z range were recorded simultaneously by coupling a velocity map imaging spectrometer with a pixel imaging mass spectrometry camera. For both molecules, delay-dependent pump-probe features were assigned to ultraviolet-induced carbon-iodine bond cleavage followed by Coulomb explosion. Multi-mass imaging also allowed the sequential cleavage of both carbon-halogen bonds in CH2ClI to be investigated. Furthermore, delay-dependent relative fragment momenta of a pair of ions were directly determined using recoil-frame covariance analysis. These results are complementary to conventional velocity map imaging experiments and demonstrate the application of time-resolved Coulomb explosion imaging to photoinduced real-time molecular motion.

4.
J Chem Phys ; 147(1): 013933, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28688450

RESUMO

Laser-induced adiabatic alignment and mixed-field orientation of 2,6-difluoroiodobenzene (C6H3F2I) molecules are probed by Coulomb explosion imaging following either near-infrared strong-field ionization or extreme-ultraviolet multi-photon inner-shell ionization using free-electron laser pulses. The resulting photoelectrons and fragment ions are captured by a double-sided velocity map imaging spectrometer and projected onto two position-sensitive detectors. The ion side of the spectrometer is equipped with a pixel imaging mass spectrometry camera, a time-stamping pixelated detector that can record the hit positions and arrival times of up to four ions per pixel per acquisition cycle. Thus, the time-of-flight trace and ion momentum distributions for all fragments can be recorded simultaneously. We show that we can obtain a high degree of one-and three-dimensional alignment and mixed-field orientation and compare the Coulomb explosion process induced at both wavelengths.

5.
J Chem Phys ; 136(20): 204309, 2012 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-22667562

RESUMO

Two-body Coulomb explosion processes of ethane (CH(3)CH(3)) and its isotopomers (CD(3)CD(3) and CH(3)CD(3)) induced by an intense laser field (800 nm, 1.0 × 10(14) W/cm(2)) with three different pulse durations (40 fs, 80 fs, and 120 fs) are investigated by a coincidence momentum imaging method. On the basis of statistical treatment of the coincidence data, the contributions from false coincidence events are estimated and the relative yields of the decomposition pathways are determined with sufficiently small uncertainties. The branching ratios of the two body decomposition pathways of CH(3)CD(3) from which triatomic hydrogen molecular ions (H(3)(+), H(2)D(+), HD(2)(+), D(3)(+)) are ejected show that protons and deuterons within CH(3)CD(3) are scrambled almost statistically prior to the ejection of a triatomic hydrogen molecular ion. The branching ratios were estimated by statistical Rice-Ramsperger-Kassel-Marcus calculations by assuming a transition state with a hindered-rotation of a diatomic hydrogen moiety. The hydrogen scrambling dynamics followed by the two body decomposition processes are discussed also by using the anisotropies in the ejection directions of the fragment ions and the kinetic energy distribution of the two body decomposition pathways.


Assuntos
Etano/química , Hidrogênio/química , Deutério/química , Lasers , Modelos Moleculares
6.
J Chem Phys ; 134(11): 114302, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21428614

RESUMO

The formation of H(3)(+) from saturated hydrocarbon molecules represents a prototype of a complex chemical process, involving the breaking and the making of chemical bonds. We present a combined theoretical and experimental investigation providing for the first time an understanding of the mechanism of H(3)(+) formation at the molecular level. The experimental approach involves femtosecond laser pulse ionization of ethane leading to H(3)(+) ions with kinetic energies on the order of 4 to 6.5 eV. The theoretical approach involves high-level quantum chemical calculation of the complete reaction path. The calculations confirm that the process takes place on the potential energy surface of the ethane dication. A surprising result of the theoretical investigation is, that the transition state of the process can be formally regarded as a H(2) molecule attached to a C(2)H(4)(2+) entity but IRC calculations show that it belongs to the reaction channel yielding C(2)H(3)(+) + H(3)(+). Experimentally measured kinetic energies of the correlated H(3)(+) and C(2)H(3)(+) ions confirm the reaction path suggested by theory.

7.
Struct Dyn ; 5(1): 014301, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29430482

RESUMO

We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from a free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267 nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon-iodine bond. This allows investigating the influence of the molecular environment on the absorption of an intense, femtosecond XUV pulse and the subsequent Coulomb explosion process. We find that the XUV probe pulse induces local inner-shell ionization of atomic iodine in dissociating iodomethane, in contrast to non-selective ionization of all photofragments in difluoroiodobenzene. The results reveal evidence of electron transfer from methyl and phenyl moieties to a multiply charged iodine ion. In addition, indications for ultrafast charge rearrangement on the phenyl radical are found, suggesting that time-resolved Coulomb explosion imaging is sensitive to the localization of charge in extended molecules.

8.
Faraday Discuss ; 163: 461-74; discussion 513-43, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24020216

RESUMO

The dissociative ionization of ethane in intense femtosecond laser fields has been investigated as a function of the laser pulse shape by systematically varying the quadratic spectral phase, i.e. the linear chirp. A very pronounced effect of the sign of the chirp is observed for the parent ion and all fragment ion yields, all ion yields being strongly favored by negative chirp of the laser field. The ratio of the H3+ ion yield to H+ ion yield can also be manipulated by changing the linear chirp, the maximum being observed for a significantly smaller chirp value than that for the individual ion yields. Since the H+ ions and the H3+ ions predominantly originate from the dication of ethane, this indicates control of fragmentation within one charge state of the ethane. Additional experiments performed with d3-ethane demonstrate that the control is operative prior to the statistical scrambling of hydrogen atoms, further supporting the concept of intra-charge-state control. In the case of formation of CH3+ ions two different ensembles occur, one from the monocation, another from the dication. The ratio of these ensembles can again be controlled by means of the linear chirp parameter implying control between the two different charge states (inter-charge-state control).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA