Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 44(4): 1579-1592, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36440953

RESUMO

This study aimed to investigate the influence of stroke lesions in predefined highly interconnected (rich-club) brain regions on functional outcome post-stroke, determine their spatial specificity and explore the effects of biological sex on their relevance. We analyzed MRI data recorded at index stroke and ~3-months modified Rankin Scale (mRS) data from patients with acute ischemic stroke enrolled in the multisite MRI-GENIE study. Spatially normalized structural stroke lesions were parcellated into 108 atlas-defined bilateral (sub)cortical brain regions. Unfavorable outcome (mRS > 2) was modeled in a Bayesian logistic regression framework. Effects of individual brain regions were captured as two compound effects for (i) six bilateral rich club and (ii) all further non-rich club regions. In spatial specificity analyses, we randomized the split into "rich club" and "non-rich club" regions and compared the effect of the actual rich club regions to the distribution of effects from 1000 combinations of six random regions. In sex-specific analyses, we introduced an additional hierarchical level in our model structure to compare male and female-specific rich club effects. A total of 822 patients (age: 64.7[15.0], 39% women) were analyzed. Rich club regions had substantial relevance in explaining unfavorable functional outcome (mean of posterior distribution: 0.08, area under the curve: 0.8). In particular, the rich club-combination had a higher relevance than 98.4% of random constellations. Rich club regions were substantially more important in explaining long-term outcome in women than in men. All in all, lesions in rich club regions were associated with increased odds of unfavorable outcome. These effects were spatially specific and more pronounced in women.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Teorema de Bayes , Encéfalo , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/patologia , Modelos Neurológicos
2.
Stroke ; 52(10): e581-e585, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34412512

RESUMO

Background and Purpose: We aimed to compare outcome of endovascular thrombectomy in acute ischemic stroke in patients with and without cerebral amyloid angiopathy (CAA). Methods: We included patients with and without possible or probable CAA based on the modified Boston criteria from an observational multicenter cohort of patients with acute ischemic stroke and endovascular thrombectomy, the German Stroke Registry Endovascular Treatment trial. We analyzed baseline characteristics, procedural parameters, and functional outcome after 90 days. Results: Twenty-eight (17.3%) of 162 acute ischemic stroke patients were diagnosed with CAA based on iron-sensitive magnetic resonance imaging performed before endovascular thrombectomy. CAA patients were less likely to have a good 90-day outcome (14.3 versus 37.8%). National Institutes of Health Stroke Scale score (adjusted odds ratio, 0.88; P<0.001), successful recanalization (adjusted odds ratio 6.82; P=0.005), and CAA (adjusted odds ratio 0.28; P=0.049) were independent outcome predictors. Intravenous thrombolysis was associated with an increased rate of good outcome (36.3% versus 0%, P=0.031) in CAA. Conclusions: Endovascular thrombectomy with or without thrombolysis appears beneficial in acute ischemic stroke patients with possible or probable CAA, but is associated with a worse functional outcome. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03356392.


Assuntos
Angiopatia Amiloide Cerebral/complicações , Procedimentos Endovasculares/métodos , AVC Isquêmico/etiologia , AVC Isquêmico/cirurgia , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/cirurgia , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , AVC Isquêmico/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Sistema de Registros , Acidente Vascular Cerebral/diagnóstico por imagem , Trombectomia , Terapia Trombolítica , Resultado do Tratamento
3.
Hum Brain Mapp ; 42(7): 2278-2291, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33650754

RESUMO

The aim of the current study was to explore the whole-brain dynamic functional connectivity patterns in acute ischemic stroke (AIS) patients and their relation to short and long-term stroke severity. We investigated resting-state functional MRI-based dynamic functional connectivity of 41 AIS patients two to five days after symptom onset. Re-occurring dynamic connectivity configurations were obtained using a sliding window approach and k-means clustering. We evaluated differences in dynamic patterns between three NIHSS-stroke severity defined groups (mildly, moderately, and severely affected patients). Furthermore, we built Bayesian hierarchical models to evaluate the predictive capacity of dynamic connectivity and examine the interrelation with clinical measures, such as white matter hyperintensity lesions. Finally, we established correlation analyses between dynamic connectivity and AIS severity as well as 90-day neurological recovery (ΔNIHSS). We identified three distinct dynamic connectivity configurations acutely post-stroke. More severely affected patients spent significantly more time in a configuration that was characterized by particularly strong connectivity and isolated processing of functional brain domains (three-level ANOVA: p < .05, post hoc t tests: p < .05, FDR-corrected). Configuration-specific time estimates possessed predictive capacity of stroke severity in addition to the one of clinical measures. Recovery, as indexed by the realized change of the NIHSS over time, was significantly linked to the dynamic connectivity between bilateral intraparietal lobule and left angular gyrus (Pearson's r = -.68, p = .003, FDR-corrected). Our findings demonstrate transiently increased isolated information processing in multiple functional domains in case of severe AIS. Dynamic connectivity involving default mode network components significantly correlated with recovery in the first 3 months poststroke.


Assuntos
Conectoma , AVC Isquêmico/diagnóstico , AVC Isquêmico/fisiopatologia , Avaliação de Resultados em Cuidados de Saúde , Recuperação de Função Fisiológica/fisiologia , Idoso , Feminino , Humanos , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/terapia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença
4.
J Stroke Cerebrovasc Dis ; 30(3): 105567, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33385939

RESUMO

OBJECTIVES: Despite the proven efficacy of endovascular thrombectomy (EVT) for large vessel occlusion stroke, over half treated remain functionally disabled or die. Infarct topography may have implications for prognostication, patient selection, and the development of tissue-specific neuroprotective agents. We sought to quantify white matter injury in anterior circulation acute infarcts post-EVT to understand its significance and identify its determinants. MATERIALS AND METHODS: Demographics, history, presentations, and outcomes for consecutive patients treated with EVT were recorded in a prospectively maintained database at a single center. Acute infarct masks were coregistered to standard space. Standard atlases of white matter, cortex, and basal ganglia were used to determine region-specific infarct volumes. RESULTS: 167 individuals were identified with median age 69 years and 53% women. 85% achieved adequate reperfusion (TICI 2b-3) after EVT; 43% achieved 90-day functional independence (mRS 0-2). Median infarct volumes were 45cc (IQR 18-122) for total, 17cc (6-49) for white matter, 21cc (4-53) for cortex, and 5cc (1-8) for basal ganglia. The odds of 90-day mRS 0-2 were reduced in patients with larger white matter infarct volume (cc, OR=0.89, 95%CI=0.81-0.96), independent of cortex infarct volume, basal ganglia infarct volume, age, NIHSS, and TICI 2b-3 reperfusion. Reperfusion-to-MRI time was associated with white matter infarct volume (hr, ß=0.119, p=0.017), but not cortical or basal ganglia infarct volume. CONCLUSIONS: These data quantitatively describe region-specific infarct volumes after EVT and suggest the clinical relevance of white matter infarct volume as a predictor of long-term outcomes. Further study is warranted to examine delayed white matter infarction and the significance of specific white matter tracts.


Assuntos
Infarto Encefálico/diagnóstico por imagem , Procedimentos Endovasculares/efeitos adversos , AVC Isquêmico/terapia , Leucoencefalopatias/diagnóstico por imagem , Imageamento por Ressonância Magnética , Trombectomia/efeitos adversos , Substância Branca/diagnóstico por imagem , Idoso , Infarto Encefálico/etiologia , Bases de Dados Factuais , Feminino , Humanos , AVC Isquêmico/diagnóstico por imagem , Leucoencefalopatias/etiologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
5.
Cerebrovasc Dis ; 49(4): 419-426, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32694259

RESUMO

INTRODUCTION: White matter hyperintensity (WMH) burden is a critically important cerebrovascular phenotype related to the diagnosis and prognosis of acute ischemic stroke. The effect of WMH burden on functional outcome in large vessel occlusion (LVO) stroke has only been sparsely assessed, and direct LVO and non-LVO comparisons are currently lacking. MATERIAL AND METHODS: We reviewed acute ischemic stroke patients admitted between 2009 and 2017 at a large healthcare system in the USA. Patients with LVO were identified and clinical characteristics, including 90-day functional outcomes, were assessed. Clinical brain MRIs obtained at the time of the stroke underwent quantification of WMH using a fully automated algorithm. The pipeline incorporated automated brain extraction, intensity normalization, and WMH segmentation. RESULTS: A total of 1,601 acute ischemic strokes with documented 90-day mRS were identified, including 353 (22%) with LVO. Among those strokes, WMH volume was available in 1,285 (80.3%) who had a brain MRI suitable for WMH quantification. Increasing WMH volume from 0 to 4 mL, age, female gender, a number of stroke risk factors, presence of LVO, and higher NIHSS at presentation all decreased the odds for a favorable outcome. Increasing WMH above 4 mL, however, was not associated with decreasing odds of favorable outcome. While WMH volume was associated with functional outcome in non-LVO stroke (p = 0.0009), this association between WMH and functional status was not statistically significant in the complete case multivariable model of LVO stroke (p = 0.0637). CONCLUSION: The burden of WMH has effects on 90-day functional outcome after LVO and non-LVO strokes. Particularly, increases from no measurable WMH to 4 mL of WMH correlate strongly with the outcome. Whether this relationship of increasing WMH to worse outcome is more pronounced in non-LVO than LVO strokes deserves additional investigation.


Assuntos
Isquemia Encefálica/terapia , Leucoencefalopatias/diagnóstico por imagem , Imageamento por Ressonância Magnética , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/terapia , Idoso , Idoso de 80 Anos ou mais , Isquemia Encefálica/complicações , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/fisiopatologia , Avaliação da Deficiência , Feminino , Humanos , Leucoencefalopatias/complicações , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Recuperação de Função Fisiológica , Sistema de Registros , Estudos Retrospectivos , Fatores de Risco , Índice de Gravidade de Doença , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo , Resultado do Tratamento
6.
Stroke ; 50(10): 2761-2767, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31510905

RESUMO

Background and Purpose- The ability to model long-term functional outcomes after acute ischemic stroke represents a major clinical challenge. One approach to potentially improve prediction modeling involves the analysis of connectomics. The field of connectomics represents the brain's connectivity as a graph, whose topological properties have helped uncover underlying mechanisms of brain function in health and disease. Specifically, we assessed the impact of stroke lesions on rich club organization, a high capacity backbone system of brain function. Methods- In a hospital-based cohort of 41 acute ischemic stroke patients, we investigated the effect of acute infarcts on the brain's prestroke rich club backbone and poststroke functional connectomes with respect to poststroke outcome. Functional connectomes were created using 3 anatomic atlases, and characteristic path-length (L) was calculated for each connectome. The number of rich club regions affected were manually determined using each patient's diffusion weighted image. We investigated differences in L with respect to outcome (modified Rankin Scale score; 90 days) and the National Institutes of Health Stroke Scale (NIHSS; early: 2-5 days; late: 90-day follow-up). Furthermore, we assessed the effect of including number of rich club regions and L in outcome models, using linear regression and assessing the explained variance (R2). Results- Of 41 patients (mean age [range]: 70 [45-89] years), 61% were male. Lower L was generally associated with better outcome. Including number of rich club regions in the backward selection models of outcome, R2 increased between 1.3- and 2.6-fold beyond that of traditional markers (age and acute lesion volume) for NIHSS and modified Rankin Scale score. Conclusions- In this proof-of-concept study, we showed that information on network topology can be leveraged to improve modeling of poststroke functional outcome. Future studies are warranted to validate this approach in larger prospective studies of outcome prediction in stroke.


Assuntos
Modelos Neurológicos , Vias Neurais/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Isquemia Encefálica/fisiopatologia , Conectoma/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Recuperação de Função Fisiológica
7.
Stroke ; 50(7): 1734-1741, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31177973

RESUMO

Background and Purpose- We evaluated deep learning algorithms' segmentation of acute ischemic lesions on heterogeneous multi-center clinical diffusion-weighted magnetic resonance imaging (MRI) data sets and explored the potential role of this tool for phenotyping acute ischemic stroke. Methods- Ischemic stroke data sets from the MRI-GENIE (MRI-Genetics Interface Exploration) repository consisting of 12 international genetic research centers were retrospectively analyzed using an automated deep learning segmentation algorithm consisting of an ensemble of 3-dimensional convolutional neural networks. Three ensembles were trained using data from the following: (1) 267 patients from an independent single-center cohort, (2) 267 patients from MRI-GENIE, and (3) mixture of (1) and (2). The algorithms' performances were compared against manual outlines from a separate 383 patient subset from MRI-GENIE. Univariable and multivariable logistic regression with respect to demographics, stroke subtypes, and vascular risk factors were performed to identify phenotypes associated with large acute diffusion-weighted MRI volumes and greater stroke severity in 2770 MRI-GENIE patients. Stroke topography was investigated. Results- The ensemble consisting of a mixture of MRI-GENIE and single-center convolutional neural networks performed best. Subset analysis comparing automated and manual lesion volumes in 383 patients found excellent correlation (ρ=0.92; P<0.0001). Median (interquartile range) diffusion-weighted MRI lesion volumes from 2770 patients were 3.7 cm3 (0.9-16.6 cm3). Patients with small artery occlusion stroke subtype had smaller lesion volumes ( P<0.0001) and different topography compared with other stroke subtypes. Conclusions- Automated accurate clinical diffusion-weighted MRI lesion segmentation using deep learning algorithms trained with multi-center and diverse data is feasible. Both lesion volume and topography can provide insight into stroke subtypes with sufficient sample size from big heterogeneous multi-center clinical imaging phenotype data sets.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Big Data , Isquemia Encefálica/epidemiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Redes Neurais de Computação , Variações Dependentes do Observador , Fenótipo , Estudos Retrospectivos , Fatores de Risco , Fatores Socioeconômicos , Acidente Vascular Cerebral/epidemiologia
8.
J Am Chem Soc ; 141(14): 5593-5596, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30908032

RESUMO

Oxidized collagen, wherein lysine residues are converted to the aldehyde allysine, is a universal feature of fibrogenesis, i.e. actively progressive fibrosis. Here we report the small molecule, allysine-binding positron emission tomography probe, 68Ga-NODAGA-indole, that can noninvasively detect and quantify pulmonary fibrogenesis. We demonstrate that the uptake of 68Ga-NODAGA-indole in actively fibrotic lungs is 7-fold higher than in control groups and that uptake is linearly correlated ( R2 = 0.98) with the concentration of lung allysine.


Assuntos
Ácido 2-Aminoadípico/análogos & derivados , Acetatos/química , Radioisótopos de Gálio , Compostos Heterocíclicos com 1 Anel/química , Indóis/química , Tomografia por Emissão de Pósitrons/métodos , Fibrose Pulmonar/diagnóstico por imagem , Ácido 2-Aminoadípico/química , Animais , Camundongos
9.
J Stroke Cerebrovasc Dis ; 28(1): 63-69, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30269881

RESUMO

Prediction of functional outcome after stroke based on initial presentation remains an open challenge, suggesting that an important aspect is missing from these prediction models. There exists the notion of a protective mechanism called brain reserve, which may be utilized to understand variations in disease outcome. In this work, we expand the concept of brain reserve (effective reserve) to improve prediction models of functional outcome after acute ischemic stroke (AIS). Consecutive AIS patients with acute brain magnetic resonance imaging (<48 hours) were eligible for this study. White matter hyperintensity and acute infarct volume were determined on T2 fluid attenuated inversion recovery and diffusion weighted images, respectively. Modified Rankin Scale scores were obtained at 90days poststroke. Effective reserve was defined as a latent variable using structural equation modeling by including age, systolic blood pressure, and intracranial volume measurements. Of 453 AIS patients (mean age 66.6 ± 14.7 years), 36% were male and 311 hypertensive. There was inverse association between effective reserve and 90-day modified Rankin Scale scores (path coefficient -0.18 ± 0.01, P < .01). Compared to a model without effective reserve, correlation between predicted and observed modified Rankin Scale scores improved in the effective-reserve-based model (Spearman's ρ 0.29 ± 0.18 versus 0.15 ± 0.17, P < .001). Furthermore, hypertensive patients exhibited lower effective reserve (P < 10-6). Using effective reserve in prediction models of stroke outcome is feasible and leads to better model performance. Furthermore, higher effective reserve is associated with more favorable functional poststoke outcome and might correspond to an overall better vascular health.


Assuntos
Isquemia Encefálica/diagnóstico , Encéfalo/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico , Fatores Etários , Idoso , Pressão Sanguínea , Isquemia Encefálica/complicações , Isquemia Encefálica/terapia , Estudos de Coortes , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Hipertensão/complicações , Análise de Classes Latentes , Masculino , Pessoa de Meia-Idade , Prognóstico , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Substância Branca/diagnóstico por imagem
10.
Neuroimage ; 162: 226-248, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28889005

RESUMO

Advances in neuroimaging have provided a tremendous amount of in-vivo information on the brain's organisation. Its anatomy and cortical organisation can be investigated from the point of view of several imaging modalities, many of which have been studied for mapping functionally specialised cortical areas. There is strong evidence that a single modality is not sufficient to fully identify the brain's cortical organisation. Combining multiple modalities in the same parcellation task has the potential to provide more accurate and robust subdivisions of the cortex. Nonetheless, existing brain parcellation methods are typically developed and tested on single modalities using a specific type of information. In this paper, we propose Graph-based Multi-modal Parcellation (GraMPa), an iterative framework designed to handle the large variety of available input modalities to tackle the multi-modal parcellation task. At each iteration, we compute a set of parcellations from different modalities and fuse them based on their local reliabilities. The fused parcellation is used to initialise the next iteration, forcing the parcellations to converge towards a set of mutually informed modality specific parcellations, where correspondences are established. We explore two different multi-modal configurations for group-wise parcellation using resting-state fMRI, diffusion MRI tractography, myelin maps and task fMRI. Quantitative and qualitative results on the Human Connectome Project database show that integrating multi-modal information yields a stronger agreement with well established atlases and more robust connectivity networks that provide a better representation of the population.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Humanos
12.
ArXiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562453

RESUMO

Brain parenchymal fraction (BPF) has been used as a surrogate measure of global brain atrophy, and as a biomarker of brain reserve in studies evaluating clinical outcomes after brain injury. Total brain volume at the time of injury has recently been shown to influence functional outcomes, where larger brain volumes are associated with better outcomes. Here, we assess if brain volume at the time of ischemic stroke injury is a better biomarker of functional outcome than BPF. Acute ischemic stroke cases at a single center between 2003 and 2011, with MR neuroimaging obtained within 48 hours from presentation were eligible. Functional outcomes represented by the modified Rankin Score (mRS) at 90 days post admission (mRS<3 deemed a favorable outcome) were obtained via patient interview or per chart review. Deep learning enabled automated segmentation pipelines were used to calculate brain volume, intracranial volume (ICV), and BPF on the acute neuroimaging data. Patient outcomes were modeled through logistic regressions, and model comparison was conducted using the Bayes Information Criterion (BIC). 467 patients with arterial ischemic stroke were included in the analysis. Median age was 65.8 years, and 65.3% were male. In both models, age and a larger stroke lesion volume were associated with worse functional outcomes. Higher BPF and a larger brain volume were both associated with favorable functional outcomes, however, comparison of both models suggested that the brain volume model (BIC=501) explains the data better compared to the BPF model (BIC=511). The extent of global brain atrophy has been regarded as an important biomarker of post-stroke functional outcomes and resilience to acute injury. Here, we demonstrate that a higher global brain volume at the time of injury better explains favorable functional outcomes, which can be directly clinically assessed.

13.
J Neurol ; 271(5): 2658-2661, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38366071

RESUMO

BACKGROUND: Coma is an unresponsive state of disordered consciousness characterized by impaired arousal and awareness. The epidemiology and pathophysiology of coma in ischemic stroke has been underexplored. We sought to characterize the incidence and clinical features of coma as a presentation of large vessel occlusion (LVO) stroke. METHODS: Individuals who presented with LVO were retrospectively identified from July 2018 to December 2020. Coma was defined as an unresponsive state of impaired arousal and awareness, operationalized as a score of 3 on NIHSS item 1a. RESULTS: 28/637 (4.4%) patients with LVO stroke were identified as presenting with coma. The median NIHSS was 32 (IQR 29-34) for those with coma versus 11 (5-18) for those without (p < 0.0001). In coma, occlusion locations included basilar (13), vertebral (2), internal carotid (5), and middle cerebral (9) arteries. 8/28 were treated with endovascular thrombectomy (EVT), and 20/28 died during the admission. 65% of patients not treated with EVT had delayed presentations or large established infarcts. In models accounting for pre-stroke mRS, basilar occlusion location, intravenous thrombolysis, and EVT, coma independently increased the odds of transitioning to comfort care during admission (aOR 6.75; 95% CI 2.87,15.84; p < 0.001) and decreased the odds of 90-day mRS 0-2 (aOR 0.12; 95% CI 0.03,0.55; p = 0.007). CONCLUSIONS: It is not uncommon for patients with LVO to present with coma, and delayed recognition of LVO can lead to poor outcomes, emphasizing the need for maintaining a high index of suspicion. While more commonly thought to result from posterior LVO, coma in our cohort was similarly likely to result from anterior LVO. Efforts to improve early diagnosis and care of patients with LVO presenting with coma are crucial.


Assuntos
Coma , AVC Isquêmico , Humanos , Coma/etiologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso de 80 Anos ou mais , AVC Isquêmico/terapia , AVC Isquêmico/complicações , Trombectomia , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/etiologia , Procedimentos Endovasculares
14.
Brain Commun ; 6(1): fcae007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38274570

RESUMO

Deep learning has allowed for remarkable progress in many medical scenarios. Deep learning prediction models often require 105-107 examples. It is currently unknown whether deep learning can also enhance predictions of symptoms post-stroke in real-world samples of stroke patients that are often several magnitudes smaller. Such stroke outcome predictions however could be particularly instrumental in guiding acute clinical and rehabilitation care decisions. We here compared the capacities of classically used linear and novel deep learning algorithms in their prediction of stroke severity. Our analyses relied on a total of 1430 patients assembled from the MRI-Genetics Interface Exploration collaboration and a Massachusetts General Hospital-based study. The outcome of interest was National Institutes of Health Stroke Scale-based stroke severity in the acute phase after ischaemic stroke onset, which we predict by means of MRI-derived lesion location. We automatically derived lesion segmentations from diffusion-weighted clinical MRI scans, performed spatial normalization and included a principal component analysis step, retaining 95% of the variance of the original data. We then repeatedly separated a train, validation and test set to investigate the effects of sample size; we subsampled the train set to 100, 300 and 900 and trained the algorithms to predict the stroke severity score for each sample size with regularized linear regression and an eight-layered neural network. We selected hyperparameters on the validation set. We evaluated model performance based on the explained variance (R2) in the test set. While linear regression performed significantly better for a sample size of 100 patients, deep learning started to significantly outperform linear regression when trained on 900 patients. Average prediction performance improved by ∼20% when increasing the sample size 9× [maximum for 100 patients: 0.279 ± 0.005 (R2, 95% confidence interval), 900 patients: 0.337 ± 0.006]. In summary, for sample sizes of 900 patients, deep learning showed a higher prediction performance than typically employed linear methods. These findings suggest the existence of non-linear relationships between lesion location and stroke severity that can be utilized for an improved prediction performance for larger sample sizes.

15.
Front Aging Neurosci ; 15: 1165324, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251801

RESUMO

Background: White matter hyperintensities are an important marker of cerebral small vessel disease. This disease burden is commonly described as hyperintense areas in the cerebral white matter, as seen on T2-weighted fluid attenuated inversion recovery magnetic resonance imaging data. Studies have demonstrated associations with various cognitive impairments, neurological diseases, and neuropathologies, as well as clinical and risk factors, such as age, sex, and hypertension. Due to their heterogeneous appearance in location and size, studies have started to investigate spatial distributions and patterns, beyond summarizing this cerebrovascular disease burden in a single metric-its volume. Here, we review the evidence of association of white matter hyperintensity spatial patterns with its risk factors and clinical diagnoses. Design/methods: We performed a systematic review in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) Statement. We used the standards for reporting vascular changes on neuroimaging criteria to construct a search string for literature search on PubMed. Studies written in English from the earliest records available until January 31st, 2023, were eligible for inclusion if they reported on spatial patterns of white matter hyperintensities of presumed vascular origin. Results: A total of 380 studies were identified by the initial literature search, of which 41 studies satisfied the inclusion criteria. These studies included cohorts based on mild cognitive impairment (15/41), Alzheimer's disease (14/41), Dementia (5/41), Parkinson's disease (3/41), and subjective cognitive decline (2/41). Additionally, 6 of 41 studies investigated cognitively normal, older cohorts, two of which were population-based, or other clinical findings such as acute ischemic stroke or reduced cardiac output. Cohorts ranged from 32 to 882 patients/participants [median cohort size 191.5 and 51.6% female (range: 17.9-81.3%)]. The studies included in this review have identified spatial heterogeneity of WMHs with various impairments, diseases, and pathologies as well as with sex and (cerebro)vascular risk factors. Conclusion: The results show that studying white matter hyperintensities on a more granular level might give a deeper understanding of the underlying neuropathology and their effects. This motivates further studies examining the spatial patterns of white matter hyperintensities.

16.
medRxiv ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38234738

RESUMO

Objectives: To determine the relationship between patient-reported outcome measures (PROMs) and volumetric imaging markers in acute ischemic stroke (AIS). Patients and Methods: Patients presenting at Massachusetts General Hospital between February 14, 2017 and February 5, 2020 with a confirmed AIS by MRI were eligible and underwent a telephone interview including PROM-10 questionnaires 3-15 months after stroke. White matter hyperintensity (VWMH) and brain volumes (VBrain) were automatically determined using admission clinical MRI. Stroke lesions were manually segmented and volumes calculated (VLesion). Multivariable and ordinal regression analyses were performed to identify associations between global and PROM-10 subscores with brain volumetrics and clinical variables. Results: Utilizing data from 167 patients (mean age: 64.7; 41.9% female), higher VWMH was associated with worse global physical (ß=-0.6), global mental (ß=-0.65), physical health (OR=0.68), social satisfaction (OR=0.66), fatigue (OR=0.69) and social activities (OR=0.59) scores. Higher VLesion was associated with poorer global mental (ß=-0.79), mental health (OR=0.68), physical (OR=0.66) and social activities (OR=0.55), and emotional distress (OR=0.68) scores. Higher VBrain was linked to better global mental (ß=0.93), global physical (ß=0.79), mental health (OR=1.54) and physical activities (OR=1.72) scores. Conclusions: Neuroimaging biomarkers were significantly associated with PROMs, where higher VWMH and VLesion led to worse outcome, while higher VBrain was protective. The inclusion of neuroimaging analyses and PROMs in routine assessment provides enhanced understanding of post-stroke outcomes.

17.
Neurology ; 100(8): e822-e833, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36443016

RESUMO

BACKGROUND AND OBJECTIVES: While chronological age is one of the most influential determinants of poststroke outcomes, little is known of the impact of neuroimaging-derived biological "brain age." We hypothesized that radiomics analyses of T2-FLAIR images texture would provide brain age estimates and that advanced brain age of patients with stroke will be associated with cardiovascular risk factors and worse functional outcomes. METHODS: We extracted radiomics from T2-FLAIR images acquired during acute stroke clinical evaluation. Brain age was determined from brain parenchyma radiomics using an ElasticNet linear regression model. Subsequently, relative brain age (RBA), which expresses brain age in comparison with chronological age-matched peers, was estimated. Finally, we built a linear regression model of RBA using clinical cardiovascular characteristics as inputs and a logistic regression model of favorable functional outcomes taking RBA as input. RESULTS: We reviewed 4,163 patients from a large multisite ischemic stroke cohort (mean age = 62.8 years, 42.0% female patients). T2-FLAIR radiomics predicted chronological ages (mean absolute error = 6.9 years, r = 0.81). After adjustment for covariates, RBA was higher and therefore described older-appearing brains in patients with hypertension, diabetes mellitus, a history of smoking, and a history of a prior stroke. In multivariate analyses, age, RBA, NIHSS, and a history of prior stroke were all significantly associated with functional outcome (respective adjusted odds ratios: 0.58, 0.76, 0.48, 0.55; all p-values < 0.001). Moreover, the negative effect of RBA on outcome was especially pronounced in minor strokes. DISCUSSION: T2-FLAIR radiomics can be used to predict brain age and derive RBA. Older-appearing brains, characterized by a higher RBA, reflect cardiovascular risk factor accumulation and are linked to worse outcomes after stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/complicações , AVC Isquêmico/complicações , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/complicações
18.
Lancet Neurol ; 22(7): 602-618, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37236211

RESUMO

Cerebral small vessel disease (SVD) is common during ageing and can present as stroke, cognitive decline, neurobehavioural symptoms, or functional impairment. SVD frequently coexists with neurodegenerative disease, and can exacerbate cognitive and other symptoms and affect activities of daily living. Standards for Reporting Vascular Changes on Neuroimaging 1 (STRIVE-1) categorised and standardised the diverse features of SVD that are visible on structural MRI. Since then, new information on these established SVD markers and novel MRI sequences and imaging features have emerged. As the effect of combined SVD imaging features becomes clearer, a key role for quantitative imaging biomarkers to determine sub-visible tissue damage, subtle abnormalities visible at high-field strength MRI, and lesion-symptom patterns, is also apparent. Together with rapidly emerging machine learning methods, these metrics can more comprehensively capture the effect of SVD on the brain than the structural MRI features alone and serve as intermediary outcomes in clinical trials and future routine practice. Using a similar approach to that adopted in STRIVE-1, we updated the guidance on neuroimaging of vascular changes in studies of ageing and neurodegeneration to create STRIVE-2.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Disfunção Cognitiva , Doenças Neurodegenerativas , Humanos , Atividades Cotidianas , Neuroimagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem
19.
Neurology ; 99(9): e935-e943, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35768207

RESUMO

BACKGROUND AND OBJECTIVES: Mounting evidence implies that there are sex differences in white matter hyperintensity (WMH) burden in older people. Questions remain regarding possible differences in WMH burden between men and women of younger age, sex-specific age trajectories and effects of (un)controlled hypertension, and the effect of menopause on WMH. Therefore, our aim was to investigate these sex differences and age dependencies in WMH load across the adult life span and to examine the effect of menopause. METHODS: This cross-sectional analysis was based on participants of the population-based Rhineland Study (30-95 years) who underwent brain MRI. We automatically quantified WMH using T1-weighted, T2-weighted, and fluid-attenuated inversion recovery images. Menopausal status was self-reported. We examined associations of sex and menopause with WMH load (logit-transformed and z-standardized) using linear regression models while adjusting for age, age-squared, and vascular risk factors. We checked for an age × sex and (un)controlled hypertension × sex interaction and stratified for menopausal status comparing men with premenopausal women (persons aged 59 years or younger), men with postmenopausal women (persons aged 45 years or older), and premenopausal with postmenopausal women (age range 45-59 years). RESULTS: Of 3,410 participants with a mean age of 54.3 years (SD = 13.7), 1,973 (57.9%) were women, of which 1,167 (59.1%) were postmenopausal. We found that the increase in WMH load accelerates with age and in a sex-dependent way. Premenopausal women and men of similar age did not differ in WMH burden. WMH burden was higher and accelerated faster in postmenopausal women compared with men of similar age. In addition, we observed changes related to menopause, in that postmenopausal women had more WMH than premenopausal women of similar age. Women with uncontrolled hypertension had a higher WMH burden compared with men, which was unrelated to menopausal status. DISCUSSION: After menopause, women displayed a higher burden of WMH than contemporary premenopausal women and men and an accelerated increase in WMH. Sex-specific effects of uncontrolled hypertension on WMH were not related to menopause. Further studies are warranted to investigate menopause-related physiologic changes that may inform on causal mechanisms involved in cerebral small vessel disease progression.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Hipertensão , Leucoaraiose , Substância Branca , Adulto , Idoso , Estudos Transversais , Feminino , Humanos , Hipertensão/epidemiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Pré-Menopausa , Substância Branca/diagnóstico por imagem
20.
Neurology ; 99(13): e1364-e1379, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35803717

RESUMO

BACKGROUND AND OBJECTIVES: To examine whether high white matter hyperintensity (WMH) burden is associated with greater stroke severity and worse functional outcomes in lesion pattern-specific ways. METHODS: MR neuroimaging and NIH Stroke Scale data at index stroke and the modified Rankin Scale (mRS) score at 3-6 months after stroke were obtained from the MRI-Genetics Interface Exploration study of patients with acute ischemic stroke (AIS). Individual WMH volume was automatically derived from fluid-attenuated inversion recovery images. Stroke lesions were automatically segmented from diffusion-weighted imaging (DWI) images, parcellated into atlas-defined brain regions and further condensed to 10 lesion patterns via machine learning-based dimensionality reduction. Stroke lesion effects on AIS severity and unfavorable outcomes (mRS score >2) were modeled within purpose-built Bayesian linear and logistic regression frameworks. Interaction effects between stroke lesions and a high vs low WMH burden were integrated via hierarchical model structures. Models were adjusted for age, age2, sex, total DWI lesion and WMH volumes, and comorbidities. Data were split into derivation and validation cohorts. RESULTS: A total of 928 patients with AIS contributed to acute stroke severity analyses (age: 64.8 [14.5] years, 40% women) and 698 patients to long-term functional outcome analyses (age: 65.9 [14.7] years, 41% women). Stroke severity was mainly explained by lesions focused on bilateral subcortical and left hemispherically pronounced cortical regions across patients with both a high and low WMH burden. Lesions centered on left-hemispheric insular, opercular, and inferior frontal regions and lesions affecting right-hemispheric temporoparietal regions had more pronounced effects on stroke severity in case of high compared with low WMH burden. Unfavorable outcomes were predominantly explained by lesions in bilateral subcortical regions. In difference to the lesion location-specific WMH effects on stroke severity, higher WMH burden increased the odds of unfavorable outcomes independent of lesion location. DISCUSSION: Higher WMH burden may be associated with an increased stroke severity in case of stroke lesions involving left-hemispheric insular, opercular, and inferior frontal regions (potentially linked to language functions) and right-hemispheric temporoparietal regions (potentially linked to attention). Our findings suggest that patients with specific constellations of WMH burden and lesion locations may have greater benefits from acute recanalization treatments. Future clinical studies are warranted to systematically assess this assumption and guide more tailored treatment decisions.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Leucoaraiose , Acidente Vascular Cerebral , Substância Branca , Idoso , Teorema de Bayes , Feminino , Humanos , Leucoaraiose/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Substância Branca/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA