Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Lasers Surg Med ; 49(3): 233-239, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27636715

RESUMO

BACKGROUND AND OBJECTIVE: Diagnosis of esophageal diseases is often hampered by sampling errors that are inherent in endoscopic biopsy, the standard of care. Spectrally encoded confocal microscopy (SECM) is a high-speed reflectance confocal endomicroscopy technology that has the potential to visualize cellular features from large regions of the esophagus, greatly decreasing the likelihood of sampling error. In this paper, we report results from a pilot clinical study imaging the human esophagus in vivo with a prototype SECM endoscopic probe. MATERIALS AND METHODS: In this pilot clinical study, six patients undergoing esophagogastroduodenoscopy (EGD) for surveillance of Barrett's esophagus (BE) were imaged with the SECM endoscopic probe. The device had a diameter of 7 mm, a length of 2 m, and a rapid-exchange guide wire provision for esophageal placement. During EGD, the distal portion of the esophagus of each patient was sprayed with 2.5% acetic acid to enhance nuclear contrast. The SECM endoscopic probe was then introduced over the guide wire to the distal esophagus and large-area confocal images were obtained by helically scanning the optics within the SECM probe. RESULTS: Large area confocal images of the distal esophagus (image length = 4.3-10 cm; image width = 2.2 cm) were rapidly acquired at a rate of ∼9 mm2 /second, resulting in short procedural times (1.8-4 minutes). SECM enabled the visualization of clinically relevant architectural and cellular features of the proximal stomach and normal and diseased esophagus, including squamous cell nuclei, BE glands, and goblet cells. CONCLUSIONS: This study demonstrates that comprehensive spectrally encoded confocal endomicroscopy is feasible and can be used to visualize architectural and cellular microscopic features from large segments of the distal esophagus at the gastroesophageal junction. By providing microscopic images that are less subject to sampling error, this technology may find utility in guiding biopsy and planning and assessing endoscopic therapy. Lasers Surg. Med. 49:233-239, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Esôfago de Barrett/patologia , Endoscopia do Sistema Digestório/métodos , Neoplasias Esofágicas/patologia , Microscopia Confocal/métodos , Lesões Pré-Cancerosas/patologia , Esôfago de Barrett/diagnóstico , Biópsia por Agulha , Diagnóstico Diferencial , Neoplasias Esofágicas/diagnóstico , Feminino , Humanos , Imuno-Histoquímica , Masculino , Monitorização Fisiológica/métodos , Projetos Piloto , Lesões Pré-Cancerosas/diagnóstico , Estudos de Amostragem
2.
Biophys J ; 108(5): 999-1002, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25762312

RESUMO

FRET is widely used for the study of protein-protein interactions in biological samples. However, it is difficult to quantify both the FRET efficiency (E) and the affinity (Kd) of the molecular interaction from intermolecular FRET signals in samples of unknown stoichiometry. Here, we present a method for the simultaneous quantification of the complete set of interaction parameters, including fractions of bound donors and acceptors, local protein concentrations, and dissociation constants, in each image pixel. The method makes use of fluorescence lifetime information from both donor and acceptor molecules and takes advantage of the linear properties of the phasor plot approach. We demonstrate the capability of our method in vitro in a microfluidic device and also in cells, via the determination of the binding affinity between tagged versions of glutathione and glutathione S-transferase, and via the determination of competitor concentration. The potential of the method is explored with simulations.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Microfluídica/métodos , Células HEK293 , Humanos , Proteínas Luminescentes/metabolismo
3.
Opt Express ; 19(3): 2546-55, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21369074

RESUMO

Biophysical imaging tools exploit several properties of fluorescence to map cellular biochemistry. However, the engineering of a cost-effective and user-friendly detection system for sensing the diverse properties of fluorescence is a difficult challenge. Here, we present a novel architecture for a spectrograph that permits integrated characterization of excitation, emission and fluorescence anisotropy spectra in a quantitative and efficient manner. This sensing platform achieves excellent versatility of use at comparatively low costs. We demonstrate the novel optical design with example images of plant cells and of mammalian cells expressing fluorescent proteins undergoing energy transfer.


Assuntos
Aumento da Imagem/instrumentação , Microscopia Confocal/instrumentação , Microscopia de Fluorescência/instrumentação , Espectrometria de Fluorescência/instrumentação , Anisotropia , Desenho de Equipamento , Análise de Falha de Equipamento
4.
Opt Express ; 14(4): 1547-56, 2006 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19503481

RESUMO

Skeletal muscle fibers are a known source of form birefringence in biological tissue. The birefringence present in skeletal muscle is associated with the ultrastructure of individual sarcomeres, specifically the arrangement of A-bands corresponding to the thick myosin filaments. Certain structural proteins that prevent damage and maintain the structural and functional health of the muscle fiber preserve the organization of the Abands in skeletal muscle. Therefore, the level of birefringence detected can estimate the health of the muscle as well as the damage incurred during exercise. Murine skeletal muscle from both genetically-altered (mdx) and normal (wild-type) specimens were imaged in vivo with a fiber-based PSOCT imaging system to quantitatively determine the level of birefringence present in the tissue before and after exercise. The mdx muscle lacks dystrophin, a structural protein that is mutated in Duchenne muscular dystrophy in humans. Muscle from these mdx mice exhibited a marked decrease in birefringence after exercise, whereas the wild-type muscle was highly birefringent before and after exercise. The quantitative results from this tissue optics study suggest for the first time that there is a distinct relationship between the degree of birefringence detected using PS-OCT and the sarcomeric ultrastructure present within skeletal muscle.

5.
Endosc Int Open ; 2(3): E135-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26134959

RESUMO

BACKGROUND AND STUDY AIMS: Biopsy sampling error can be a problem for the diagnosis of certain gastrointestinal tract diseases. Spectrally-encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technology that has the potential to overcome sampling error by imaging large regions of gastrointestinal tract tissues. The aim of this study was to test a recently developed SECM endoscopic probe for comprehensively imaging large segments of the esophagus at the microscopic level in vivo. METHODS: Topical acetic acid was endoscopically applied to the esophagus of a normal living swine. The 7 mm diameter SECM endoscopic probe was transorally introduced into the esophagus over a wire. Optics within the SECM probe were helically scanned over a 5 cm length of the esophagus. Confocal microscopy data was displayed and stored in real time. RESULTS: Very large confocal microscopy images (length = 5 cm; circumference = 2.2 cm) of swine esophagus from three imaging depths, spanning a total area of 33 cm(2), were obtained in about 2 minutes. SECM images enabled the visualization of cellular morphology of the swine esophagus, including stratified squamous cell nuclei, basal cells, and collagen within the lamina propria. CONCLUSIONS: The results from this study suggest that the SECM technology can rapidly provide large, contiguous confocal microscopy images of the esophagus in vivo. When applied to human subjects, the unique comprehensive, microscopic imaging capabilities of this technology may be utilized for improving the screening and surveillance of various esophageal diseases.

6.
Biomed Opt Express ; 4(10): 1925-36, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24156054

RESUMO

Spectrally encoded confocal microscopy (SECM) is a form of reflectance confocal microscopy that can achieve high imaging speeds using relatively simple probe optics. Previously, the feasibility of conducting large-area SECM imaging of the esophagus in bench top setups has been demonstrated. Challenges remain, however, in translating SECM into a clinically-useable device; the tissue imaging performance should be improved, and the probe size needs to be significantly reduced so that it can fit into luminal organs of interest. In this paper, we report the development of new SECM endoscopic probe optics that addresses these challenges. A custom water-immersion aspheric singlet (NA = 0.5) was developed and used as the objective lens. The water-immersion condition was used to reduce the spherical aberrations and specular reflection from the tissue surface, which enables cellular imaging of the tissue deep below the surface. A custom collimation lens and a small-size grating were used along with the custom aspheric singlet to reduce the probe size. A dual-clad fiber was used to provide both the single- and multi- mode detection modes. The SECM probe optics was made to be 5.85 mm in diameter and 30 mm in length, which is small enough for safe and comfortable endoscopic imaging of the gastrointestinal tract. The lateral resolution was 1.8 and 2.3 µm for the single- and multi- mode detection modes, respectively, and the axial resolution 11 and 17 µm. SECM images of the swine esophageal tissue demonstrated the capability of this device to enable the visualization of characteristic cellular structural features, including basal cell nuclei and papillae, down to the imaging depth of 260 µm. These results suggest that the new SECM endoscopic probe optics will be useful for imaging large areas of the esophagus at the cellular scale in vivo.

7.
Biomed Opt Express ; 4(9): 1636-45, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24049684

RESUMO

Spectrally encoded confocal microscopy (SECM) is a reflectance confocal microscopy technology that uses a diffraction grating to illuminate different locations on the sample with distinct wavelengths. SECM can obtain line images without any beam scanning devices, which opens up the possibility of high-speed imaging with relatively simple probe optics. This feature makes SECM a promising technology for rapid endoscopic imaging of internal organs, such as the esophagus, at microscopic resolution. SECM imaging of the esophagus has been previously demonstrated at relatively low line rates (5 kHz). In this paper, we demonstrate SECM imaging of large regions of esophageal tissues at a high line imaging rate of 100 kHz. The SECM system comprises a wavelength-swept source with a fast sweep rate (100 kHz), high output power (80 mW), and a detector unit with a large bandwidth (100 MHz). The sensitivity of the 100-kHz SECM system was measured to be 60 dB and the transverse resolution was 1.6 µm. Excised swine and human esophageal tissues were imaged with the 100-kHz SECM system at a rate of 6.6 mm(2)/sec. Architectural and cellular features of esophageal tissues could be clearly visualized in the SECM images, including papillae, glands, and nuclei. These results demonstrate that large-area SECM imaging of esophageal tissues can be successfully conducted at a high line imaging rate of 100 kHz, which will enable whole-organ SECM imaging in vivo.

8.
J Opt Soc Am A Opt Image Sci Vis ; 25(5): 1156-64, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18451922

RESUMO

We propose a novel method of measuring the group refractive index of biological tissues at the micrometer scale. The technique utilizes a broadband confocal microscope embedded into a Mach-Zehnder interferometer, with which spectral interferograms are measured as the sample is translated through the focus of the beam. The method does not require phase unwrapping and is insensitive to vibrations in the sample and reference arms. High measurement stability is achieved because a single spectral interferogram contains all the information necessary to compute the optical path delay of the beam transmitted through the sample. Included are a physical framework defining the forward problem, linear solutions to the inverse problem, and simulated images of biologically relevant phantoms.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Interferometria/métodos , Microscopia Confocal/métodos , Microscopia de Interferência/métodos , Refratometria/métodos
9.
J Opt Soc Am A Opt Image Sci Vis ; 24(9): 2527-42, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17767224

RESUMO

A large-aperture, electromagnetic model for coherent microscopy is presented and the inverse scattering problem is solved. Approximations to the model are developed for near-focus and far-from-focus operations. These approximations result in an image-reconstruction algorithm consistent with interferometric synthetic aperture microscopy (ISAM): this validates ISAM processing of optical-coherence-tomography and optical-coherence-microscopy data in a vectorial setting. Numerical simulations confirm that diffraction-limited resolution can be achieved outside the focal plane and that depth of focus is limited only by measurement noise and/or detector dynamic range. Furthermore, the model presented is suitable for the quantitative study of polarimetric coherent microscopy systems operating within the first Born approximation.


Assuntos
Fenômenos Eletromagnéticos , Microscopia de Interferência , Modelos Teóricos , Tomografia de Coerência Óptica , Algoritmos , Simulação por Computador , Processamento de Imagem Assistida por Computador , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA