Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Membranes (Basel) ; 11(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513934

RESUMO

The reuse of steeping lye is crucial for the sustainable production of viscose fibers. Steeping lye contains hemicellulose and many alkaline degradation products, such as organic acids, so that its purification can be evaluated in terms of total organic carbon removal. When considering purification by membrane filtration, intermolecular interactions between hemicellulose and organic acids can strongly affect their retention efficiency. Herein, we give more insights into the ultrafiltration and nanofiltration of steeping lye and corresponding model solutions. Furthermore, we studied the impact of total organic carbon concentration, hemicellulose concentration and sodium hydroxide concentration on the membrane performance. Hydrogen bonds between hemicellulose and certain types of hydroxy acids increased the retention of the latter. In contrast, charge based repulsion forces led to a decreased retention of a certain type of hydroxy acids. It can be clearly shown that taking intermolecular interactions into account is highly important for the description of complex multicomponent mixtures. In addition, the results can be extended to other, highly alkaline process streams with organic content, such as Kraft pulping liquors.

2.
Membranes (Basel) ; 9(11)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717461

RESUMO

Nanofiltration is considered to be an appropriate separation technique in the production of bio-based materials. For the utilization of process streams from the viscose-fiber production, understanding the separation behavior of organic compounds in highly alkaline solutions is necessary. Experiments with succinic acid in sodium hydroxide (NaOH) solutions with varying concentrations up to 5 mol L-1 were performed with the NP030 membrane from Microdyn Nadir. Furthermore, experiments with aqueous disodium succinate and solutions of sodium sulfate in sodium hydroxide were carried out. The influence of concentration ratios and temperature was studied. The Spiegler and Kedem model as well as the Pusch model were applied to fit the experimental data. Additionally, scanning electron microscopy (SEM) and infrared (ATR-IR) measurements were performed to validate the chemical and thermomechanical stability of the membrane. The succinic acid retention varies with its degree of dissociation. In a fully dissociated form, the NaOH concentration shows no impact on the retention. In contrast, the retention of sulfate decreases with increasing NaOH concentration.

3.
Front Chem ; 6: 297, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30073163

RESUMO

In this paper, continuous hydrodeoxygenation (HDO) of liquid phase pyrolysis (LPP) oil in lab-scale is discussed. Pyrolysis oil is derived from the bioCRACK pilot plant from BDI - BioEnergy International GmbH at the OMV refinery in Vienna/Schwechat. Three hydrodeoxygenation temperature set points at 350, 375, and 400°C were investigated. Liquid hourly space velocity (LHSV) was 0.5 h-1. Hydrodeoxygenation was performed with an in situ sulfided metal oxide catalyst. During HDO, three product phases were collected. A gaseous phase, an aqueous phase and a hydrocarbon phase. Experiment duration was 36 h at 350 and 375°C and 27.5 h at 400°C in steady state operation mode. Water content of the hydrocarbon phase was reduced to below 0.05 wt.%. The water content of the aqueous phase was between 96.9 and 99.9 wt.%, indicating effective hydrodeoxygenation. The most promising results, concerning the rate of hydrodeoxygenation, were achieved at 400°C. After 36/27.5 h of experiment, catalyst deactivation was observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA