Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 206: 111373, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33002820

RESUMO

Water quality guidelines and ecological risk assessment of chemical substances like nickel (Ni) in tropical regions such as South East Asia and Melanesia are often based on temperate information as a result of fewer Ni ecotoxicity data available for tropical species. This leaves an unknown margin of uncertainty in the risk assessment in the tropics. In order to fill this data gap, this study was designed to conduct standard toxicity tests on Ni with two freshwater species (acute tests) and three marine species (acute and chronic tests) originated from tropical Hong Kong. All tests were carried out using measured concentrations of Ni with control mortality below 15%. The median lethal concentrations (LC50s) were determined as 2520 (95% confidence interval: 2210, 2860) and 426 (351, 515) µg Ni L-1 for the freshwater gastropods Pomacea lineata (48 h) and Sulcospira hainanensis (96 h), respectively, while 96 h LC50s of 4300 (3610, 5090), 18,200 (6470, 51,200), 62,400 (56,800, 68,500), and 71,700 (68,200, 75,400) µg Ni L-1 were derived for the marine copepod Tigriopus japonicus, the gastropod Monodonta labio, juvenile and adult of the marine fish Oryzias melastigma, respectively. The chronic effect concentration of 10% (EC10) based on the intrinsic rate of increase of the population of T. japonicus was 29 (12, 69) µg Ni L-1. In terms of growth inhibition, the chronic EC10 for M. labio was 34 (17, 67) µg Ni L-1. The results also indicated that T. japonicus in maturation stage (LC10: 484 (349, 919) µg Ni L-1) was less sensitive than its nauplii stage (LC10: 44 (27, 72) µg Ni L-1). This study represents an important addition of high-quality toxicity data to the tropical Ni toxicity database which can be used for future ecological risk assessment of Ni and derivation of its water quality guidelines in tropical regions.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Ecotoxicologia , Níquel/toxicidade , Clima Tropical , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/classificação , Ecotoxicologia/normas , Água Doce , Hong Kong , Dose Letal Mediana , Níquel/análise , Água do Mar , Poluentes Químicos da Água/análise
2.
Environ Sci Technol ; 51(22): 13407-13416, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29043797

RESUMO

In aquatic ecosystems, the cycling and toxicity of nickel (Ni) are coupled to other elemental cycles that can limit its bioavailability. Current sediment risk assessment approaches consider acid-volatile sulfide (AVS) as the major binding phase for Ni, but have not yet incorporated ligands that are present in oxic sediments. Our study aimed to assess how metal oxides play a role in Ni bioavailability in surficial sediments exposed to effluent from two mine sites. We coupled spatially explicit sediment geochemistry (i.e., separate oxic and suboxic) to the indigenous macroinvertebrate community structure. Effluent-exposed sites contained high concentrations of sediment Ni and AVS, though roughly 80% less AVS was observed in surface sediments. Iron (Fe) oxide mineral concentrations were elevated in surface sediments and bound a substantial proportion of Ni. Redundancy analysis of the invertebrate community showed surface sediment geochemistry significantly explained shifts in community abundances. Relative abundance of the dominant mayfly (Ephemeridae) was reduced in sites with greater bioavailable Ni, but accounting for Fe oxide-bound Ni greatly decreased variation in effect thresholds between the two mine sites. Our results provide field-based evidence that solid-phase ligands in oxic sediment, most notably Fe oxides, may have a critical role in controlling nickel bioavailability.


Assuntos
Sedimentos Geológicos , Níquel , Animais , Disponibilidade Biológica , Ephemeroptera , Óxidos , Poluentes Químicos da Água
3.
Environ Sci Technol ; 48(21): 12893-901, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25313978

RESUMO

Robust sediment quality criteria require chemistry and toxicity data predictive of concentrations where population/community response should occur under known geochemical conditions. Understanding kinetic and geochemical effects on toxicant bioavailability is key, and these are influenced by infaunal sediment bioturbation. This study used fine-scale sediment and porewater measurement of contrasting infaunal effects on carbon-normalized SEM-AVS to evaluate safe or potentially toxic nickel concentrations in a high-binding Spartina saltmarsh sediment (4%TOC; 35-45 µmol-S2-·g(-1)). Two crustaceans producing sharply contrasting bioturbation--the copepod Amphiascus tenuiremis and amphipod Leptocheirus plumulosus--were cultured in oxic to anoxic sediments with SEM[Ni]-AVS, TOC, porewater [Ni], and porewater DOC measured weekly. From 180 to 750 µg-Ni·g(-1) sediment, amphipod bioturbation reduced [AVS] and enhanced porewater [Ni]. Significant amphipod uptake, mortality, and growth-depression occurred at the higher sediment [Ni] even when [SEM-AVS]/foc suggested acceptable risk. Less bioturbative copepods produced higher AVS and porewater DOC but exhibited net population growth despite porewater [Ni] 1.3-1.7× their aqueous [Ni] LOEC. Copepod aqueous tests with/without dissolved organic matter showed significant aqueous DOC protection, which suggests porewater DOC attenuates sediment Ni toxicity. The SEM[Ni]-AVS relationship was predictive of acceptable risk for copepods at the important population-growth level.


Assuntos
Comportamento Animal/efeitos dos fármacos , Crustáceos/efeitos dos fármacos , Estuários , Sedimentos Geológicos/química , Metais/isolamento & purificação , Níquel/toxicidade , Sulfetos/isolamento & purificação , Anfípodes/efeitos dos fármacos , Animais , Bioensaio , Disponibilidade Biológica , Carbono/farmacologia , Copépodes/efeitos dos fármacos , Larva/efeitos dos fármacos , Porosidade , Volatilização , Poluentes Químicos da Água/toxicidade
4.
Environ Toxicol Chem ; 42(6): 1257-1265, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36920027

RESUMO

Nickel (Ni) is used primarily in the production of alloys like stainless steel and is increasingly being used in the production of batteries for the electric vehicle market. Exposure of Ni to ecosystems is of concern because Ni can be toxic to aquatic organisms. The influence of water chemistry constituents (e.g., hardness, pH, dissolved organic carbon) on the toxicity of Ni has prompted the development and use of bioavailability models, such as biotic ligand models (BLMs), which have been demonstrated to accurately predict Ni toxicity in broadly different ecosystems, including Europe, North America, and Australia. China, a leading producer of Ni, is considering bioavailability-based approaches for regulating Ni emissions. Adoption of bioavailability-based approaches in China requires information to demonstrate the validity of bioavailability models for the local water chemistry conditions. The present study investigates the toxicity of Ni to three standard test species (Daphnia magna, Pseudokirchneriella subcapitata, and Danio rerio) in field-collected natural waters that are broadly representative of the range of water chemistries and bioavailabilities encountered in Chinese lakes and rivers. All experimental data are within a factor of 3 of the BLM predicted values for all tests with all species. For D. magna, six of seven waters were predicted within a factor of 2 of the experimental result. Comparison of experimental data against BLM predictions shows that the existing Ni bioavailability models are able to explain the differences in toxicity that result from water chemistry conditions in China. Validation of bioavailability models to water chemistries and bioavailability ranges within China provides technical support for the derivation of site-specific Ni water quality criteria in China. Environ Toxicol Chem 2023;42:1257-1265. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Níquel , Poluentes Químicos da Água , Animais , Níquel/análise , Disponibilidade Biológica , Ecossistema , Água Doce/química , Invertebrados , Peixes , Poluentes Químicos da Água/análise
5.
Environ Sci Technol ; 45(13): 5798-805, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21648434

RESUMO

The pool of bioavailable metal in sediments can be much smaller than total metal concentration due to complexation and precipitation with ligands. Metal bioavailability and toxicity in sediment is often predicted from models of simultaneous extracted metal and acid volatile sulfide (SEM-AVS); however, studies of the applicability of these models for Ni-contaminated sediments have been conducted primarily in laboratory settings. We investigated the utility of the SEM-AVS models under field conditions: Five lotic sediments with a range of sulfide and organic carbon contents were amended with four concentrations of Ni, deployed in streams for eight weeks, and examined for colonizing macroinvertebrates. After four weeks, colonizing macroinvertebrates showed a strong negative response to the Ni-treated sediments and SEM-AVS models of bioavailability differentiated between toxic and nontoxic conditions. By Week 8, relationships deteriorated between colonizing macroinvertebrates and SEM-AVS model predictions. Total Ni in the sediment did not change through time; however, Ni partitioning shifted from being dominated by organic cabon at deployment to associations with Fe and Mn. Combined geochemical and toxicity results suggest that Fe and Mn oxides in surface sediments resulted in Ni being less available to biota. This implies that current SEM-AVS models may overestimate bioavailable Ni in sediments with oxic surface layers and sufficient Fe and Mn.


Assuntos
Sedimentos Geológicos/química , Invertebrados/crescimento & desenvolvimento , Invertebrados/metabolismo , Modelos Químicos , Níquel/metabolismo , Níquel/farmacocinética , Rios , Animais , Disponibilidade Biológica , Carbono/metabolismo , Ferro/metabolismo , Manganês/metabolismo , Níquel/análise
6.
Sci Total Environ ; 797: 148921, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34346380

RESUMO

The Arctic faces many environmental challenges, including the continued exploitation of its mineral resources such as nickel (Ni). The responsible development of Ni mining in the Arctic requires establishing a risk assessment framework that accounts for the specificities of this unique region. We set out to conduct preliminary assessments of Ni exposure and effects in aquatic Arctic ecosystems. Our analysis of Ni source and transport processes in the Arctic suggests that fresh, estuarine, coastal, and marine waters are potential Ni-receiving environments, with both pelagic and benthic communities being at risk of exposure. Environmental concentrations of Ni show that sites with elevated Ni concentrations are located near Ni mining operations in freshwater environments, but there is a lack of data for coastal and estuarine environments near such operations. Nickel bioavailability in Arctic freshwaters seems to be mainly driven by dissolved organic carbon (DOC) concentrations with bioavailability being the highest in the High Arctic, where DOC levels are the lowest. However, this assessment is based on bioavailability models developed from non-Arctic species. At present, the lack of chronic Ni toxicity data on Arctic species constitutes the greatest hurdle toward the development of Ni quality standards in this region. Although there are some indications that polar organisms may not be more sensitive to contaminants than non-Arctic species, biological adaptations necessary for life in polar environments may have led to differences in species sensitivities, and this must be addressed in risk assessment frameworks. Finally, Ni polar risk assessment is further complicated by climate change, which affects the Arctic at a faster rate than the rest of the world. Herein we discuss the source, fate, and toxicity of Ni in Arctic aquatic environments, and discuss how climate change effects (e.g., permafrost thawing, increased precipitation, and warming) will influence risk assessments of Ni in the Arctic.


Assuntos
Ecossistema , Poluentes Químicos da Água , Organismos Aquáticos , Regiões Árticas , Carbono , Água Doce , Níquel/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
7.
Environ Toxicol Chem ; 40(1): 113-126, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33044759

RESUMO

Bioavailability-based approaches have been developed for the regulation of metals in freshwaters in several countries. Empirical multiple linear regression (MLR) models have been developed for nickel that can be applied to aquatic organisms. The MLR models have been compared against the use of previously developed biotic ligand models (BLMs) for the normalization of an ecotoxicity dataset compiled for the derivation of a water quality guideline value that could be applied in Australia and New Zealand. The MLR models were developed from data for a number of specific species and were validated independently to confirm their reliability. An MLR modeling approach using different models for algae, plants, invertebrates, and vertebrates performed better than either a pooled MLR model for all taxa or the BLMs, in terms of its ability to correctly predict the results of the tests in the ecotoxicity database based on their water chemistry and a fitted species-specific sensitivity parameter. The present study demonstrates that MLR approaches can be developed and validated to predict chronic nickel toxicity to freshwater ecosystems from existing datasets. The MLR approaches provide a viable alternative to the use of BLMs for taking account of nickel bioavailability in freshwaters for regulatory purposes. Environ Toxicol Chem 2021;40:113-126. © 2020 SETAC.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Animais , Austrália , Disponibilidade Biológica , Ecossistema , Água Doce , Nova Zelândia , Níquel/toxicidade , Reprodutibilidade dos Testes , Poluentes Químicos da Água/toxicidade
8.
Integr Environ Assess Manag ; 17(4): 802-813, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33404201

RESUMO

Nickel laterite ore deposits are becoming increasingly important sources of Ni for the global marketplace and are found mainly in tropical and subtropical regions, including Indonesia, the Philippines, Papua New Guinea, Cuba, and New Caledonia. There are few legislatively derived standards or guidelines for the protection of aquatic life for Ni in many of these tropical regions, and bioavailability-based environmental risk assessment (ERA) approaches for metals have mainly been developed and tested in temperate regions, such as the United States and Europe. This paper reports on a multi-institutional, 5-y testing program to evaluate Ni exposure, effects, and risk characterization in the Southeast Asia and Melanesia (SEAM) region, which includes New Caledonia, Papua New Guinea, the Philippines, and Indonesia. Further, we have developed an approach to determine if the individual components of classical ERA, including effects assessments, exposure assessments, and risk characterization methodologies (which include bioavailability normalization), are applicable in this region. A main conclusion of this research program is that although ecosystems and exposures may be different in tropical systems, ERA paradigms are constant. A large chronic ecotoxicity data set for Ni is now available for tropical species, and the data developed suggest that tropical ecosystems are not uniquely sensitive to Ni exposure; hence, scientific support exists for combining tropical and temperate data sets to develop tropical environmental quality standards (EQSs). The generic tropical database and tropical exposure scenarios generated can be used as a starting point to examine the unique biotic and abiotic characteristics of specific tropical ecosystems in the SEAM region. Integr Environ Assess Manag 2021;17:802-813. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Níquel , Poluentes Químicos da Água , Sudeste Asiático , Disponibilidade Biológica , Ecossistema , Europa (Continente) , Água Doce , Melanesia , Medição de Risco , Poluentes Químicos da Água/análise
9.
Environ Toxicol Chem ; 39(12): 2540-2551, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32955772

RESUMO

The absence of chronic toxicity data for tropical marine waters has limited our ability to derive appropriate water quality guideline values for metals in tropical regions. To aid environmental management, temperate data are usually extrapolated to other climatic (e.g., tropical) regions. However, differences in climate, water chemistry, and endemic biota between temperate and tropical systems make such extrapolations uncertain. Chronic nickel (Ni) toxicity data were compiled for temperate (24 species) and tropical (16 species) marine biota and their sensitivities to Ni compared. Concentrations to cause a 10% effect for temperate biota ranged from 2.9 to 20 300 µg Ni/L, with sea urchin larval development being the most sensitive endpoint. Values for tropical data ranged from 5.5 to 3700 µg Ni/L, with copepod early-life stage development being the most sensitive test. There was little difference in temperate and tropical marine sensitivities to Ni, with 5% hazardous concentrations (95% confidence interval) of 4.4 (1.8-17), 9.6 (1.7-26), and 5.8 (2.8-15) µg Ni/L for temperate, tropical, and combined temperate and tropical species, respectively. To ensure greater taxonomic coverage and based on guidance provided in Australia and New Zealand, it is recommended that the combined data set be used as the basis to generate a jurisdiction-specific water quality guideline of 6 µg Ni/L for 95% species protection applicable to both temperate and tropical marine environments. Environ Toxicol Chem 2020;39:2540-2551. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Guias como Assunto , Níquel/toxicidade , Água do Mar/química , Clima Tropical , Poluentes Químicos da Água/toxicidade , Animais , Austrália , Copépodes/efeitos dos fármacos , Copépodes/embriologia , Ecossistema , Ecotoxicologia , Nova Zelândia , Especificidade da Espécie , Testes de Toxicidade , Qualidade da Água
10.
Environ Toxicol Chem ; 39(10): 1861-1883, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32619073

RESUMO

We reviewed the literature on toxicity of nanoparticulate nickel (nano-Ni) to aquatic organisms, from the perspective of relevance and reliability in a regulatory framework. Our main findings were 1) much of the published nano-Ni toxicity data is of low or medium quality in terms of reporting key physical-chemical properties, methodologies, and results, compared with published dissolved nickel studies; and 2) based on the available information, some common findings about nanoparticle (NP) toxicity are not supported for nano-Ni. First, we concluded that nanoparticulate elemental nickel and nickel oxide, which differ in chemical composition, generally did not differ in their toxicity. Second, there is no evidence that the toxicity of nano-Ni increases as the size of the NPs decreases. Third, for most organisms tested, nano-Ni was not more toxic on a mass-concentration basis than dissolved Ni. Fourth, there is conflicting evidence about whether the toxicity is directly caused by the NPs or by the dissolved fraction released from the NPs. However, no evidence suggests that any of the molecular, physiological, and structural mechanisms of nano-Ni toxicity differ from the general pattern for many metal-based nanomaterials, wherein oxidative stress underlies the observed effects. Physical-chemical factors in the design and conduct of nano-Ni toxicity tests are important, but often they are not adequately reported (e.g., characteristics of dry nano-Ni particles and of wetted particles in exposure waters; exposure-water chemistry). Environ Toxicol Chem 2020;39:1861-1883 © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Nanopartículas/toxicidade , Níquel/toxicidade , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Estresse Oxidativo/efeitos dos fármacos , Reprodutibilidade dos Testes , Testes de Toxicidade/métodos , Testes de Toxicidade/normas
11.
Environ Toxicol Chem ; 39(11): 2256-2268, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32761946

RESUMO

The US Environmental Protection Agency (USEPA) is reviewing the protectiveness of the national ambient water quality criteria (WQC) for nickel (Ni) and zinc (Zn) and compiling toxicity databases to update the WQC. An amphipod (Hyalella azteca) and a unionid mussel (Lampsilis siliquoidea) have shown high sensitivity to Ni and Zn in previous studies. However, there remained uncertainties regarding the influence of test duration (48 vs 96 h) and the presence and absence of food in acute exposures with the amphipod, and there were also concerns about poor control of amphipod growth and reproduction and mussel growth in chronic exposures. We conducted acute 48- and 96-h water-only toxicity tests to evaluate the influence of feeding and test durations on the toxicity of dissolved Ni and Zn to the amphipod; we also used recently refined test methods to conduct chronic Ni and Zn toxicity tests to evaluate the sensitivity of the amphipod (6-wk exposure) and the mussel (4- and 12-wk exposures). The 96-h 50% effect concentrations (EC50s) of 916 µg Ni/L and 99 µg Zn/L from acute amphipod tests without feeding decreased from the 48-h EC50s by 62 and 33%, respectively, whereas the 96-h EC50s of 2732 µg Ni/L and 194 µg Zn/L from the tests with feeding decreased from the 48-h EC50s by 10 and 26%, indicating that the presence or absence of food had apparent implications for the 96-h EC50. Our chronic 6-wk EC20s for the amphipod (4.5 µg Ni/L and 35 µg Zn/L) were 50 to 67% lower than the 6-wk EC20s from previous amphipod tests, and our chronic 4-wk EC20s for the mussel (41 µg Ni/L and 66 µg Zn/L) were similar to or up to 42% lower than the 4-wk EC20s from previous mussel tests. The lower EC20s from the present study likely reflect more accurate estimates of inherent sensitivity to Ni and Zn due to the refined test conditions. Finally, increasing the chronic test duration from 4 to 12 wk substantially increased the toxicity of Zn to the mussel, whereas the 4- and 12-wk Ni effect needs to be re-evaluated to understand the large degree of variation in organism responses observed in the present study. Environ Toxicol Chem 2020;39:2256-2268. © 2020 SETAC.


Assuntos
Anfípodes/efeitos dos fármacos , Bivalves/efeitos dos fármacos , Níquel/toxicidade , Testes de Toxicidade Aguda/métodos , Testes de Toxicidade Crônica/métodos , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade , Anfípodes/crescimento & desenvolvimento , Anfípodes/fisiologia , Animais , Bivalves/fisiologia , Feminino , Larva/efeitos dos fármacos , Larva/fisiologia , Poluentes Químicos da Água/química , Qualidade da Água
12.
Integr Environ Assess Manag ; 16(6): 983-997, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32543042

RESUMO

Dissolved Ni concentrations inhibiting the growth of juvenile great pond snails (Lymnaea stagnalis) have been documented to vary from about 1 to 200 µg L-1 Ni. This variability makes L. stagnalis either a moderately sensitive or the most sensitive freshwater species to chronic Ni exposure tested to date. Given the role of sensitive species in environmental risk assessment frameworks, it is particularly important to understand this variability, i.e., to characterize the factors that modulate Ni toxicity and that may confound toxicity test outcomes when uncontrolled. In the present study, we tested if this variability was due to analytical (growth calculation: biomass versus growth rate), environmental (water quality), lab-specific practices, and/or snail population differences among earlier studies. Specifically, we reanalyzed previously published Ni toxicity data and conducted additional measurements of Ni aqueous speciation, short-term Ni uptake, and chronic Ni toxicity with test waters and snail cultures used in previous studies. Corrections for Ni bioavailability and growth calculations explained a large degree of variability in the published literature. However, a residual 16-fold difference remained puzzling between 2 studies: Niyogi et al. (2014) (low ECxs) and Crémazy et al. (2018) (high ECxs). Indeed, differences in metal bioavailability due to water chemistry, lab-specific practices, and snail population sensitivity could not explain the large variation in Ni toxicity in these 2 very similar studies. Other potentially important toxicity-modifying factors were not directly evaluated in the present work: test duration, diet, snail holding conditions, and snail age at onset of testing. The present analysis highlights the need for further studies to elucidate 1) the mechanisms of growth inhibition in Ni-exposed L. stagnalis and 2) the important abiotic and biotic factors affecting this biological response. Until these processes are understood, substantial uncertainties will remain about inclusion of this species in Ni environmental risk assessment. Integr Environ Assess Manag 2020;16:983-997. © 2020 SETAC.


Assuntos
Níquel , Poluentes Químicos da Água , Animais , Água Doce , Lymnaea , Níquel/toxicidade , Poluentes Químicos da Água/toxicidade , Qualidade da Água
13.
Arch Environ Contam Toxicol ; 57(1): 60-7, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18841408

RESUMO

The potential modifying effects of certain water quality parameters (e.g., hardness, alkalinity, pH) on the acute toxicity of boron were tested using a freshwater cladoceran, Ceriodaphnia dubia. By comparison, boron acute toxicity was less affected by water quality characteristics than some metals (e.g., copper and silver). Increases in alkalinity over the range tested did not alter toxicity. Increases in water hardness appeared to have an effect with very hard waters (>500 mg/L as CaCO(3)). Decreased pH had a limited influence on boron acute toxicity in laboratory waters. Increasing chloride concentration did not provide a protective effect. Boron acute toxicity was unaffected by sodium concentrations. Median acute lethal concentrations (LC(50)) in natural water samples collected from three field sites were all greater than in reconstituted laboratory waters that matched natural waters in all respects except for dissolved organic carbon. Water effect ratios in these waters ranged from 1.4 to 1.8. In subsequent studies using a commercially available source of natural organic matter, acute toxicity decreased with increased dissolved organic carbon, suggesting, along with the natural water studies, that dissolved organic carbon should be considered further as a modifier of boron toxicity in natural waters where it exceeds 2 mg/L.


Assuntos
Boro/toxicidade , Cladocera/efeitos dos fármacos , Oligoelementos/toxicidade , Animais , Carbonato de Cálcio/análise , Carbono/análise , Cloretos/análise , Cladocera/metabolismo , Monitoramento Ambiental , Água Doce/química , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Sódio/análise , Testes de Toxicidade
14.
Environ Toxicol Chem ; 37(2): 293-317, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28975699

RESUMO

More than two-thirds of the world's nickel (Ni) lateritic deposits are in tropical regions, and just less than half are within South East Asia and Melanesia (SEAM). With increasing Ni mining and processing in SEAM, environmental risk assessment tools are required to ensure sustainable development. Currently, there are no tropical-specific water or sediment quality guideline values for Ni, and the appropriateness of applying guideline values derived for temperate systems (e.g., Europe) to tropical ecosystems is unknown. Databases of Ni toxicity and toxicity tests for tropical freshwater and sediment species were compiled. Nickel toxicity data were ranked, using a quality assessment, identifying data to potentially use to derive tropical-specific Ni guideline values. There were no data for Ni toxicity in tropical freshwater sediments. For tropical freshwaters, of 163 Ni toxicity values for 40 different species, high-quality chronic data, based on measured Ni concentrations, were found for just 4 species (1 microalga, 2 macrophytes, and 1 cnidarian), all of which were relevant to SEAM. These data were insufficient to calculate tropical-specific guideline values for long-term aquatic ecosystem protection in tropical regions. For derivation of high-reliability tropical- or SEAM-specific water and sediment quality guideline values, additional research effort is required. Using gap analysis, we recommend how research gaps could be filled. Environ Toxicol Chem 2018;37:293-317. © 2017 SETAC.


Assuntos
Biota , Água Doce , Sedimentos Geológicos/química , Níquel/toxicidade , Clima Tropical , Animais , Testes de Toxicidade
15.
Environ Toxicol Chem ; 36(5): 1128-1137, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27935089

RESUMO

Current ecological risk assessment and water quality regulations for nickel (Ni) use mechanistically based, predictive tools such as biotic ligand models (BLMs). However, despite many detailed studies, the precise mechanism(s) of Ni toxicity to aquatic organisms remains elusive. This uncertainty in the mechanism(s) of action for Ni has led to concern over the use of tools like the BLM in some regulatory settings. To address this knowledge gap, the authors used an adverse outcome pathway (AOP) analysis, the first AOP for a metal, to identify multiple potential mechanisms of Ni toxicity and their interactions with freshwater aquatic organisms. The analysis considered potential mechanisms of action based on data from a wide range of organisms in aquatic and terrestrial environments on the premise that molecular initiating events for an essential metal would potentially be conserved across taxa. Through this analysis the authors identified 5 potential molecular initiating events by which Ni may exert toxicity on aquatic organisms: disruption of Ca2+ homeostasis, disruption of Mg2+ homeostasis, disruption of Fe2+/3+ homeostasis, reactive oxygen species-induced oxidative damage, and an allergic-type response of respiratory epithelia. At the organ level of biological organization, these 5 potential molecular initiating events collapse into 3 potential pathways: reduced Ca2+ availability to support formation of exoskeleton, shell, and bone for growth; impaired respiration; and cytotoxicity and tumor formation. At the level of the whole organism, the organ-level responses contribute to potential reductions in growth and reproduction and/or alterations in energy metabolism, with several potential feedback loops between each of the pathways. Overall, the present AOP analysis provides a robust framework for future directed studies on the mechanisms of Ni toxicity and for developing AOPs for other metals. Environ Toxicol Chem 2017;36:1128-1137. © 2016 SETAC.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Níquel/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/metabolismo , Cálcio/metabolismo , Ferro/metabolismo , Magnésio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco
16.
Integr Environ Assess Manag ; 13(4): 652-663, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27599457

RESUMO

Regulatory policies in many parts of the world recognize either the utility of or the mandate that all available studies be considered in environmental or ecological hazard and risk assessment (ERA) of chemicals, including studies from the peer-reviewed literature. Consequently, a vast array of different studies and data types need to be considered. The first steps in the evaluation process involve determining whether the study is relevant to the ERA and sufficiently reliable. Relevance evaluation is typically performed using existing guidance but involves application of "expert judgment" by risk assessors. In the present paper, we review published guidance for relevance evaluation and, on the basis of the practical experience within the group of authors, we identify additional aspects and further develop already proposed aspects that should be considered when conducting a relevance assessment for ecotoxicological studies. From a regulatory point of view, the overarching key aspect of relevance concerns the ability to directly or indirectly use the study in ERA with the purpose of addressing specific protection goals and ultimately regulatory decision making. Because ERA schemes are based on the appropriate linking of exposure and effect estimates, important features of ecotoxicological studies relate to exposure relevance and biological relevance. Exposure relevance addresses the representativeness of the test substance, environmental exposure media, and exposure regime. Biological relevance deals with the environmental significance of the test organism and the endpoints selected, the ecological realism of the test conditions simulated in the study, as well as a mechanistic link of treatment-related effects for endpoints to the protection goal identified in the ERA. In addition, uncertainties associated with relevance should be considered in the assessment. A systematic and transparent assessment of relevance is needed for regulatory decision making. The relevance aspects also need to be considered by scientists when designing, performing, and reporting ecotoxicological studies to facilitate their use in ERA. Integr Environ Assess Manag 2017;13:652-663. © 2016 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecotoxicologia , Monitoramento Ambiental , Política Ambiental , Poluição Ambiental/estatística & dados numéricos , Tomada de Decisões , Ecologia , Meio Ambiente , Poluentes Ambientais/análise , Medição de Risco/métodos
17.
Environ Toxicol Chem ; 35(2): 257-65, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26808908

RESUMO

Bioavailability of metals to aquatic organisms can be considered to be a combination of the physicochemical factors governing metal behavior and the specific pathophysiological characteristics of the organism's biological receptor. Effectively this means that a measure of bioavailability will reflect the exposures that organisms in the water column actually "experience". This is important because it has long been established that measures of total metal in waters have limited relevance to potential environmental risk. The concept of accounting for bioavailability in regard to deriving and implementing environmental water quality standards is not new, but the regulatory reality has lagged behind the development of scientific evidence supporting the concept. Practical and technical reasons help to explain this situation. For example, concerns remain from regulators and the regulated that the efforts required to change existing systems of metal environmental protection that have been in place for over 35 yr are so great as not to be commensurate with likely benefits. However, more regulatory jurisdictions are now considering accounting for metal bioavailability in assessments of water quality as a means to support evidence-based decision-making. In the past decade, both the US Environmental Protection Agency and the European Commission have established bioavailability-based standards for metals, including Cu and Ni. These actions have shifted the debate toward identifying harmonized approaches for determining when knowledge is adequate to establish bioavailability-based approaches and how to implement them.


Assuntos
Meio Ambiente , Metais/metabolismo , Qualidade da Água/normas , Animais , Organismos Aquáticos , Europa (Continente) , Guias como Assunto , Estados Unidos , United States Environmental Protection Agency
18.
Environ Toxicol Chem ; 35(10): 2397-2404, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27253879

RESUMO

A bioavailability-based environmental quality standard (EQS) was established for nickel in freshwaters under the European Union's Water Framework Directive. Bioavailability correction based on pH, water hardness, and dissolved organic carbon is a demonstrable improvement on existing hardness-based quality standards, which may be underprotective in high-hardness waters. The present study compares several simplified bioavailability tools developed to implement the Ni EQS (biomet, M-BAT, and PNECPro) against the full bioavailability normalization procedure on which the EQS was based. Generally, all tools correctly distinguished sensitive waters from insensitive waters, although with varying degrees of accuracy compared with full normalization. Biomet and M-BAT predictions were consistent with, but less accurate than, full bioavailability normalization results, whereas PNECpro results were generally more conservative. The comparisons revealed important differences in tools in development, which results in differences in the predictions. Importantly, the models used for the development of PNECpro use a different ecotoxicity dataset, and a different bioavailability normalization approach using fewer biotic ligand models (BLMs) than that used for the derivation of the Ni EQS. The failure to include all of the available toxicity data, and all of the appropriate NiBLMs, has led to some significant differences between the predictions provided by PNECpro and those calculated using the process agreed to in Europe under the Water Framework Directive and other chemicals management programs (such as REACH). These considerable differences mean that PNECpro does not reflect the behavior, fate, and ecotoxicity of nickel, and raises concerns about its applicability for checking compliance against the Ni EQS. Environ Toxicol Chem 2016;35:2397-2404. © 2016 SETAC.


Assuntos
Água Doce/química , Níquel/metabolismo , Poluentes Químicos da Água/metabolismo , Organismos Aquáticos/efeitos dos fármacos , Disponibilidade Biológica , Europa (Continente) , Níquel/toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Qualidade da Água
19.
Integr Environ Assess Manag ; 12(4): 735-46, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27640416

RESUMO

To assess nickel (Ni) toxicity and behavior in freshwater sediments, a large-scale laboratory and field sediment testing program was conducted. The program used an integrative testing strategy to generate scientifically based threshold values for Ni in sediments and to develop integrated equilibrium partitioning-based bioavailability models for assessing risks of Ni to benthic ecosystems. The sediment testing program was a multi-institutional collaboration that involved extensive laboratory testing, field validation of laboratory findings, characterization of Ni behavior in natural and laboratory conditions, and examination of solid phase Ni speciation in sediments. The laboratory testing initiative was conducted in 3 phases to satisfy the following objectives: 1) evaluate various methods for spiking sediments with Ni to optimize the relevance of sediment Ni exposures; 2) generate reliable ecotoxicity data by conducting standardized chronic ecotoxicity tests using 9 benthic species in sediments with low and high Ni binding capacity; and, 3) examine sediment bioavailability relationships by conducting chronic ecotoxicity testing in sediments that showed broad ranges of acid volatile sulfides, organic C, and Fe. A subset of 6 Ni-spiked sediments was deployed in the field to examine benthic colonization and community effects. The sediment testing program yielded a broad, high quality data set that was used to develop a Species Sensitivity Distribution for benthic organisms in various sediment types, a reasonable worst case predicted no-effect concentration for Ni in sediment (PNECsediment ), and predictive models for bioavailability and toxicity of Ni in freshwater sediments. A bioavailability-based approach was developed using the ecotoxicity data and bioavailability models generated through the research program. The tiered approach can be used to fulfill the outstanding obligations under the European Union (EU) Existing Substances Risk Assessment, EU Registration, Evaluation, Authorisation, and Regulation of Chemicals (REACH), and other global regulatory initiatives. Integr Environ Assess Manag 2016;12:735-746. © 2015 SETAC.


Assuntos
Monitoramento Ambiental/métodos , Níquel/toxicidade , Poluentes Químicos da Água/toxicidade , Água Doce/química , Sedimentos Geológicos/química , Medição de Risco/métodos
20.
Environ Pollut ; 218: 1308-1323, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27622840

RESUMO

The South East Asian Melanesian (SEAM) region contains the world's largest deposits of nickel lateritic ores. Environmental impacts may occur if mining operations are not adequately managed. Effects data for tropical ecosystems are required to assess risks of contaminant exposure and to derive water quality guidelines (WQG) to manage these risks. Currently, risk assessment tools and WQGs for the tropics are limited due to the sparse research on how contaminants impact tropical biota. As part of a larger project to develop appropriate risk assessment tools to ensure sustainable nickel production in SEAM, nickel effects data were required. The aim of this review was to compile data on the effects of nickel on tropical marine, estuarine, pelagic and benthic species, with a particular focus on SEAM. There were limited high quality chronic nickel toxicity data for tropical marine species, and even fewer for those relevant to SEAM. Of the data available, the most sensitive SEAM species to nickel were a sea urchin, copepod and anemone. There is a significant lack of high quality chronic data for several ecologically important taxonomic groups including cnidarians, molluscs, crustaceans, echinoderms, macroalgae and fish. No high quality chronic nickel toxicity data were available for estuarine waters or marine and estuarine sediments. The very sparse toxicity data for tropical species limits our ability to conduct robust ecological risk assessment and may require additional data generation or read-across from similar species in other databases (e.g. temperate) to fill data gaps. Recommendations on testing priorities to fill these data gaps are presented.


Assuntos
Copépodes/efeitos dos fármacos , Peixes , Intoxicação por Metais Pesados , Níquel/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Sudeste Asiático , Biota/efeitos dos fármacos , Ecologia , Ecossistema , Melanesia , Metais Pesados/toxicidade , Mineração , Intoxicação , Medição de Risco , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA