Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(3): e1010355, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35271688

RESUMO

Human cytomegalovirus (HCMV) is a major pathogen in immunocompromised patients. The UL146 gene exists as 14 diverse genotypes among clinical isolates, which encode 14 different CXC chemokines. One genotype (vCXCL1GT1) is a known agonist for CXCR1 and CXCR2, while two others (vCXCL1GT5 and vCXCL1GT6) lack the ELR motif considered crucial for CXCR1 and CXCR2 binding, thus suggesting another receptor targeting profile. To determine the receptor target for vCXCL1GT5, the chemokine was probed in a G protein signaling assay on all 18 classical human chemokine receptors, where CXCR2 was the only receptor being activated. In addition, vCXCL1GT5 recruited ß-arrestin in a BRET-based assay and induced migration in a chemotaxis assay through CXCR2, but not CXCR1. In contrast, vCXCL1GT1 stimulated G protein signaling, recruited ß-arrestin and induced migration through both CXCR1 and CXCR2. Both vCXCL1GT1 and vCXCL1GT5 induced equally potent and efficacious migration of neutrophils, and ELR vCXCL1GT4 and non-ELR vCXCL1GT6 activated only CXCR2. In contrast to most human chemokines, the 14 UL146 genotypes have remarkably long C-termini. Comparative modeling using Rosetta showed that each genotype could adopt the classic chemokine core structure, and predicted that the extended C-terminal tail of several genotypes (including vCXCL1GT1, vCXCL1GT4, vCXCL1GT5, and vCXCL1GT6) forms a novel ß-hairpin not found in human chemokines. Secondary NMR shift and TALOS+ analysis of vCXCL1GT1 supported the existence of two stable ß-strands. C-terminal deletion of vCXCL1GT1 resulted in a non-functional protein and in a shift to solvent exposure for tryptophan residues likely due to destabilization of the chemokine fold. The results demonstrate that non-ELR chemokines can activate CXCR2 and suggest that the UL146 chemokines have unique C-terminal structures that stabilize the chemokine fold. Increased knowledge of the structure and interaction partners of the chemokine variants encoded by UL146 is key to understanding why circulating HCMV strains sustain 14 stable genotypes.


Assuntos
Quimiocinas CXC , Citomegalovirus , Neutrófilos , Movimento Celular , Quimiocinas CXC/genética , Citomegalovirus/genética , Genótipo , Humanos , Interleucina-8 , Neutrófilos/citologia , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8B/agonistas , Receptores de Interleucina-8B/genética
2.
Nat Commun ; 15(1): 4611, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816420

RESUMO

G protein-coupled receptors (GPCRs) are pivotal therapeutic targets, but their complex structure poses challenges for effective drug design. Nanobodies, or single-domain antibodies, have emerged as a promising therapeutic strategy to target GPCRs, offering advantages over traditional small molecules and antibodies. However, an incomplete understanding of the structural features enabling GPCR-nanobody interactions has limited their development. In this study, we investigate VUN701, a nanobody antagonist targeting the atypical chemokine receptor 3 (ACKR3). We determine that an extended CDR3 loop is required for ACKR3 binding. Uncommon in most nanobodies, an extended CDR3 is prevalent in GPCR-targeting nanobodies. Combining experimental and computational approaches, we map an inhibitory ACKR3-VUN701 interface and define a distinct conformational mechanism for GPCR inactivation. Our results provide insights into class A GPCR-nanobody selectivity and suggest a strategy for the development of these new therapeutic tools.


Assuntos
Receptores CXCR , Anticorpos de Domínio Único , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo , Humanos , Receptores CXCR/metabolismo , Receptores CXCR/genética , Receptores CXCR/antagonistas & inibidores , Receptores CXCR/química , Células HEK293 , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais
3.
SLAS Discov ; 28(4): 163-169, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36841432

RESUMO

The mucosal chemokine CCL28 is a promising target for immunotherapy drug development due to its elevated expression level in epithelial cells and critical role in creating and maintaining an immunosuppressive tumor microenvironment. Using sulfotyrosine as a probe, NMR chemical shift mapping identified a potential receptor-binding hotspot on the human CCL28 surface. CCL28 was screened against 2,678 commercially available chemical fragments by 2D NMR, yielding thirteen verified hits. Computational docking predicted that two fragments could occupy adjoining subsites within the sulfotyrosine recognition cleft. Dual NMR titrations confirmed their ability to bind CCL28 simultaneously, thereby validating an initial fragment pair for linking and merging strategies to design high-potency CCL28 inhibitors.


Assuntos
Quimiocinas CC , Quimiocinas , Humanos , Ligantes , Quimiocinas/metabolismo , Quimiocinas CC/metabolismo , Células Epiteliais/metabolismo , Descoberta de Drogas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA