RESUMO
We report on a synthetic method where polyanhydride is used as starting material and the ester monomers are inserted through complete esterification, leading to an alternating ester-anhydride copolymer. The molar ratio of ricinoleic acid (RA) and sebacic acid (SA) was optimized until polysebacic acid is completely converted to carboxylic acid-terminated RA-SA and RA-SA-RA ester-dicarboxylic acids. These dimers and trimers were activated with acetic anhydride, polymerized under heat and vacuum to yield alternating RA-SA copolymer. The resulting alternating poly(ester-anhydride) have the RA at regular intervals. The regular occurrences of RA side chains prevent anhydride interchange, enhancing hydrolytic stability, which allows storage of the polymer at room temperature.
Assuntos
Anidridos/química , Materiais Biocompatíveis/química , Ácidos Decanoicos/química , Ácidos Dicarboxílicos/química , Ésteres/química , Substâncias Macromoleculares/química , Polímeros/química , Ácidos Ricinoleicos/químicaRESUMO
Poly(anhydride) are unstable and prone to hydrolytic degradation and depolymerisation via anhydride interchange. They are stored at -20°C, packed under inert atmosphere until use. We synthesized a new poly(anhydride) from ricinoleic (RA) and sebacic (SA) acid with alternating ester-anhydride structure that is stable at 25°C for over 18months. The copolymer is also stable in chloroform solution and under γ-irradiation. The polymer hydrolyses through anhydride cleavage lasting ~7days to form oligoesters, which are stable for >30days. The release of gentamycin from the synthesized alternate polymer matrix is sustained compared to the random copolymer.