Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(13): 7071-7081, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32179678

RESUMO

A limited nuclear war between India and Pakistan could ignite fires large enough to emit more than 5 Tg of soot into the stratosphere. Climate model simulations have shown severe resulting climate perturbations with declines in global mean temperature by 1.8 °C and precipitation by 8%, for at least 5 y. Here we evaluate impacts for the global food system. Six harmonized state-of-the-art crop models show that global caloric production from maize, wheat, rice, and soybean falls by 13 (±1)%, 11 (±8)%, 3 (±5)%, and 17 (±2)% over 5 y. Total single-year losses of 12 (±4)% quadruple the largest observed historical anomaly and exceed impacts caused by historic droughts and volcanic eruptions. Colder temperatures drive losses more than changes in precipitation and solar radiation, leading to strongest impacts in temperate regions poleward of 30°N, including the United States, Europe, and China for 10 to 15 y. Integrated food trade network analyses show that domestic reserves and global trade can largely buffer the production anomaly in the first year. Persistent multiyear losses, however, would constrain domestic food availability and propagate to the Global South, especially to food-insecure countries. By year 5, maize and wheat availability would decrease by 13% globally and by more than 20% in 71 countries with a cumulative population of 1.3 billion people. In view of increasing instability in South Asia, this study shows that a regional conflict using <1% of the worldwide nuclear arsenal could have adverse consequences for global food security unmatched in modern history.


Assuntos
Clima , Grão Comestível , Abastecimento de Alimentos , Modelos Biológicos , Guerra Nuclear , Glycine max
2.
Environ Manage ; 69(5): 871-886, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35212795

RESUMO

Glyphosate is controversially discussed because of its alleged harmful effects on human health and the environment. Although it is approved until December 2022 in the European Union, the Austrian government discusses a national ban. Research on farmers' intentions to deal with upcoming pesticide policy changes is limited and planned responses to a national glyphosate ban may inform accompanying measures and the development of weed management alternatives. Therefore, we have conducted 41 qualitative semi-structured interviews with farmers to explore their intended weed management if glyphosate-based herbicides were no longer available in Austria. The interviews were systematically analyzed, whereby the Theory of Planned Behavior (TPB) with its three social-psychological constructs served as guidance, i.e., attitude toward the planned behavior, subjective norm, and perceived behavioral control toward the planned behavior. We grouped farmers based on differences in their behavioral intentions toward glyphosate-free weed management, and identified four types of farmers by assigning group-specific attributes of the TPB constructs to the groups of farmers with similar behavioral intentions. Given a national glyphosate ban, the farmers intend to implement either mechanical or chemical alternatives, which would be solely applied or combined with changes in cultivation. Attitude toward the planned behavior, descriptive norms, and perceived behavioral control affect behavioral intentions, whereas injunctive norms do not differ much between the interviewed farmers. What unites the four types of farmers is that they would rather accept a glyphosate ban, if weed management alternatives with similar effectiveness and costs were available.


Assuntos
Fazendeiros , Glicina , Áustria , Fazendeiros/psicologia , Glicina/análogos & derivados , Glicina/toxicidade , Humanos , Intenção , Glifosato
3.
J Environ Manage ; 287: 112318, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33740746

RESUMO

Soils as key component of terrestrial ecosystems are under increasing pressures. As an advance to current static assessments, we present a dynamic soil functions assessment (SFA) to evaluate the current and future state of soils regarding their nutrient storage, water regulation, productivity, habitat and carbon sequestration functions for the case-study region in the Lower Austrian Mostviertel. Carbon response functions simulating the development of regional soil organic carbon (SOC) stocks until 2100 are used to couple established indicator-based SFA methodology with two climate and three land use scenarios, i.e. land sparing (LSP), land sharing (LSH), and balanced land use (LBA). Results reveal a dominant impact of land use scenarios on soil functions compared to the impact from climate scenarios and highlight the close link between SOC development and the quality of investigated soil functions, i.e. soil functionality. The soil habitat and soil carbon sequestration functions on investigated agricultural land are positively affected by maintenance of grassland under LSH (20% of the case-study region), where SOC stocks show a steady and continuous increase. By 2100 however, total regional SOC stocks are higher under LSP compared to LSH or LBA, due to extensive afforestation. The presented approach may improve integrative decision-making in land use planning processes. It bridges superordinate goals of sustainable development, such as climate change mitigation, with land use actions taken at local or regional scales. The dynamic SFA broadens the debate on LSH and LSP and can reduce trade-offs between soil functions through land use planning processes.


Assuntos
Carbono , Solo , Agricultura , Áustria , Carbono/análise , Sequestro de Carbono , Ecossistema
4.
Glob Environ Change ; 65: 102159, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32982074

RESUMO

Scenarios describe plausible and internally consistent views of the future. They can be used by scientists, policymakers and entrepreneurs to explore the challenges of global environmental change given an appropriate level of spatial and sectoral detail and systematic development. We followed a nine-step protocol to extend and enrich a set of global scenarios - the Shared Socio-economic Pathways (SSPs) - providing regional and sectoral detail for European agriculture and food systems using a one-to-one nesting participatory approach. The resulting five Eur-Agri-SSPs are titled (1) Agriculture on sustainable paths, (2) Agriculture on established paths, (3) Agriculture on separated paths, (4) Agriculture on unequal paths, and (5) Agriculture on high-tech paths. They describe alternative plausible qualitative evolutions of multiple drivers of particular importance and high uncertainty for European agriculture and food systems. The added value of the protocol-based storyline development process lies in the conceptual and methodological transparency and rigor; the stakeholder driven selection of the storyline elements; and consistency checks within and between the storylines. Compared to the global SSPs, the five Eur-Agri-SSPs provide rich thematic and regional details and are thus a solid basis for integrated assessments of agriculture and food systems and their response to future socio-economic and environmental changes.

5.
J Environ Manage ; 264: 110431, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32250885

RESUMO

Invasive species are considered a major threat for global agricultural production, biodiversity and ecosystem services. Their spread and establishment is mainly influenced by bio-physical factors, but also by people's activities such as tourism or farming. Understanding farmers' behavior is necessary to develop effective control measures. We conducted qualitative semi-structured interviews in south-east Austria to explore factors that facilitate or impede farmers' behavior to individually or collectively control the invasive Western Corn Rootworm (WCR, Diabrotica virgifera virgifera). We analyze the interview contents using the Capability-Opportunity-Motivation-Behavior model (COM-B model). Our results show that farmers' motivation and related behavior is influenced by intra- and interpersonal factors such as their knowledge about WCR control measures (capability psychological), perceived societal acceptance of WCR control measures or perceived normative obligations to participate in collective measures (opportunity social). Farmers' motivation (reflective and automatic) for implementing individual or collective WCR control measures is mainly determined by their perceived self-efficacy, their perceived efficacy of WCR control measures and the perceived severity of WCR damages. Contextual factors such as environmental conditions, legal regulations, the landscape composition, the farm type or financial impacts of WCR control measures (opportunity physical) are essential prerequisites for farmers' behavior. The results suggest that new modes of knowledge transfer are required to facilitate the proactive implementation of individual and collective WCR control measures prior to trigger events, such as severe WCR damages. The development of a trusting and communicative environment between farmers is key for collective WCR control. Exchange with residents about WCR and applied control measures may help to create a shared understanding and increase societal acceptance. Moreover, a long-term and proactive coordination which meets individual famers' needs is required to implement collective WCR control measures. Farmers who have successfully implemented individual and collective WCR measures may encourage non-applicants and sceptics by "learning from peers".


Assuntos
Besouros , Zea mays , Animais , Áustria , Ecossistema , Fazendeiros , Humanos
6.
J Environ Manage ; 274: 111206, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32818829

RESUMO

Regional monitoring, reporting and verification of soil organic carbon change occurring in managed cropland are indispensable to support carbon-related policies. Rapidly evolving gridded agronomic models can facilitate these efforts throughout Europe. However, their performance in modelling soil carbon dynamics at regional scale is yet unexplored. Importantly, as such models are often driven by large-scale inputs, they need to be benchmarked against field experiments. We elucidate the level of detail that needs to be incorporated in gridded models to robustly estimate regional soil carbon dynamics in managed cropland, testing the approach for regions in the Czech Republic. We first calibrated the biogeochemical Environmental Policy Integrated Climate (EPIC) model against long-term experiments. Subsequently, we examined the EPIC model within a top-down gridded modelling framework constructed for European agricultural soils from Europe-wide datasets and regional land-use statistics. We explored the top-down, as opposed to a bottom-up, modelling approach for reporting agronomically relevant and verifiable soil carbon dynamics. In comparison with a no-input baseline, the regional EPIC model suggested soil carbon changes (~0.1-0.5 Mg C ha-1 y-1) consistent with empirical-based studies for all studied agricultural practices. However, inaccurate soil information, crop management inputs, or inappropriate model calibration may undermine regional modelling of cropland management effect on carbon since each of the three components carry uncertainty (~0.5-1.5 Mg C ha-1 y-1) that is substantially larger than the actual effect of agricultural practices relative to the no-input baseline. Besides, inaccurate soil data obtained from the background datasets biased the simulated carbon trends compared to observations, thus hampering the model's verifiability at the locations of field experiments. Encouragingly, the top-down agricultural management derived from regional land-use statistics proved suitable for the estimation of soil carbon dynamics consistently with actual field practices. Despite sensitivity to biophysical parameters, we found a robust scalability of the soil organic carbon routine for various climatic regions and soil types represented in the Czech experiments. The model performed better than the tier 1 methodology of the Intergovernmental Panel on Climate Change, which indicates a great potential for improved carbon change modelling over larger political regions.


Assuntos
Carbono/análise , Solo , Agricultura , Produtos Agrícolas , República Tcheca , Europa (Continente)
7.
J Environ Manage ; 249: 109431, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31470341

RESUMO

Identifying efficient adaptation measures in land and water use requires integrated approaches and a spatially and temporally explicit representation of water demand and supply. Stochastic climate information may further improve adaptation assessments to reduce the risk of misinterpretation of climate signals. We aim at developing an integrated modeling framework (IMF) that meets these requirements for assessing impacts of three stochastic climate scenarios (DRY, SIMILAR, WET), and regional irrigation water restrictions on land and water use. Furthermore, impacts on regional net benefits and the economic value of stochastic climate information (VOI) are assessed. The VOI is defined as the difference between regional net benefits with and without efficient adaptation of land and water use to a specific climate scenario. The IMF has been applied to the semi-arid Seewinkel region in Austria. Considering efficient adaptation, regional net benefits amount to 8 M€ and irrigation water use to 8.4 Mm³ in a DRY climate scenario. In a WET climate scenario and a scenario with SIMILAR conditions compared to the past, regional net benefits amount to 38 and 20 M€ and irrigation water use to 41 and 21 Mm³, respectively. High regional net benefits are obtained through an expansion of vineyards, irrigation, and fertilization. On average, the VOI is highest if land and water use is efficiently adapted to DRY but a WET scenario is realized (506 €/ha/a) and lowest with efficient adaptation to WET but the realization of a SIMILAR scenario (58 €/ha/a).


Assuntos
Agricultura , Mudança Climática , Áustria , Clima , Abastecimento de Água
8.
J Environ Manage ; 241: 488-500, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30979560

RESUMO

Empirical research on land sharing and land sparing has been criticized because preferences of local stakeholders, socio-economic aspects, a bundle of ecosystem services and the local context were only rarely integrated. Using storylines and scenarios is a common approach to include land use drivers and local contexts or to cope with the uncertainties of future developments. The objective of the presented research is to develop comparable participatory regional land use scenarios for the year 2030 reflecting land sharing, land sparing and more intermediate developments across five different European landscapes (Austria, Germany, Switzerland, The Netherlands and Spain). In order to ensure methodological consistency among the five case studies, a hierarchical multi-scale scenario approach was developed, which consisted of i) the selection of a common global storyline to frame a common sphere of uncertainty for all case studies, ii) the definition of three contrasting qualitative European storylines (representing developments for land sharing, land sparing and a balanced storyline), and iii) the development of three explorative case study-specific land use scenarios with regional stakeholders in workshops. Land use transition rules defined by stakeholders were used to generate three different spatially-explicit scenarios for each case study by means of high-resolution land use maps. All scenarios incorporated various aspects of land use and management to allow subsequent quantification of multiple ecosystem services and biodiversity indicators. The comparison of the final scenarios showed both common as well as diverging trends among the case studies. For instance, stakeholders identified further possibilities to intensify land management in all case studies in the land sparing scenario. In addition, in most case studies stakeholders agreed on the most preferred scenario, i.e. either land sharing or balanced, and the most likely one, i.e. balanced. However, they expressed some skepticism regarding the general plausibility of land sparing in a European context. It can be concluded that stakeholder perceptions and the local context can be integrated in land sharing and land sparing contexts subject to particular process design principles.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Áustria , Alemanha , Países Baixos , Espanha , Suíça
9.
J Environ Manage ; 252: 109701, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31629178

RESUMO

Moving towards a more sustainable future requires concerted actions, particularly in the context of global climate change. Integrated assessments of agricultural systems (IAAS) are considered valuable tools to provide sound information for policy and decision-making. IAAS use storylines to define socio-economic and environmental framework assumptions. While a set of qualitative global storylines, known as the Shared Socio-economic Pathways (SSPs), is available to inform integrated assessments at large scales, their spatial resolution and scope is insufficient for regional studies in agriculture. We present a protocol to operationalize the development of Shared Socio-economic Pathways for European agriculture - Eur-Agri-SSPs - to support IAAS. The proposed design of the storyline development process is based on six quality criteria: plausibility, vertical and horizontal consistency, salience, legitimacy, richness and creativity. Trade-offs between these criteria may occur. The process is science-driven and iterative to enhance plausibility and horizontal consistency. A nested approach is suggested to link storylines across scales while maintaining vertical consistency. Plausibility, legitimacy, salience, richness and creativity shall be stimulated in a participatory and interdisciplinary storyline development process. The quality criteria and process design requirements are combined in the protocol to increase conceptual and methodological transparency. The protocol specifies nine working steps. For each step, suitable methods are proposed and the intended level and format of stakeholder engagement are discussed. A key methodological challenge is to link global SSPs with regional perspectives provided by the stakeholders, while maintaining vertical consistency and stakeholder buy-in. We conclude that the protocol facilitates systematic development and evaluation of storylines, which can be transferred to other regions, sectors and scales and supports inter-comparisons of IAAS.


Assuntos
Agricultura , Mudança Climática , Fatores Socioeconômicos
10.
Environ Manage ; 63(6): 804-821, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30989322

RESUMO

The lack of timely adaptation in agriculture may hamper prosperous farm developments by neglecting risks and opportunities emerging from climate change. Understanding farmers' perceptual and socio-cognitive processes is key in order to encourage on-farm adaptation. We aim at investigating how farmers' individual cognition on climate change and adaptation as well as socio-environmental context factors affect agricultural adaptation intention and avoidance. We build on the Model of Private Proactive Adaptation to Climate Change (MPPACC) and apply a qualitative interview approach in two Austrian farming regions. Twenty semi-structured interviews have been conducted with 29 farmers. Based on the results of the qualitative content analysis, we have identified four groups of farmers, which differ in the formation process of adaptation intention and avoidance: (i) climate change adaptors, (ii) integrative adaptors, (iii) cost-benefit calculators, and (iv) climate change fatalists. Farmers who are part of groups (i)-(iii) form adaptation intentions, whereas climate change fatalists do not intend to adapt. According to our analysis, adaptation intentions are only formed if farmers are aware of effective adaptation measures, accept personal responsibility for their farms, and evaluate adaptation costs positively (i.e. adaptation appraisal). Farmers' climate change appraisal as well as farm and regional characteristics are also perceived relevant for farmers' adaptation decisions but seem to be less important than adaptation appraisal. Therefore, we conclude that engagement strategies and outreach efforts need not only address risks and opportunities, but should also strengthen farmers' self-responsibility and offer adaptation measures tailored to the regional characteristics and the farmers' needs.


Assuntos
Mudança Climática , Fazendeiros , Agricultura , Áustria , Humanos , Intenção
11.
J Environ Manage ; 209: 286-300, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29306145

RESUMO

Empirical findings on actors' roles and responsibilities in the climate change adaptation process are rare even though cooperation between private and public actors is perceived important to foster adaptation in agriculture. We therefore developed the framework SAER (Stimuli-Actions-Effects-Responses) to investigate perceived relationships between private and public climate change adaptation in agriculture at regional scale. In particular, we explore agricultural experts' perceptions on (i) climatic and non-climatic factors stimulating private adaptation, (ii) farm adaption actions, (iii) potential on-farm and off-farm effects from adaptation, and (iv) the relationships between private and public adaptation. The SAER-framework is built on a comprehensive literature review and empirical findings from semi-structured interviews with agricultural experts from two case study regions in Austria. We find that private adaptation is perceived as incremental, systemic or transformational. It is typically stimulated by a mix of bio-physical and socio-economic on-farm and off-farm factors. Stimulating factors related to climate change are perceived of highest relevance for systemic and transformational adaptation whereas already implemented adaptation is mostly perceived to be incremental. Perceived effects of private adaptation are related to the environment, weather and climate, quality and quantity of agricultural products as well as human, social and economic resources. Our results also show that public adaptation can influence factors stimulating private adaptation as well as adaptation effects through the design and development of the legal, policy and organizational environment as well as the provision of educational, informational, financial, and technical infrastructure. Hence, facilitating existing and new collaborations between private and public actors may enable farmers to adapt effectively to climate change.


Assuntos
Agricultura , Mudança Climática , Parcerias Público-Privadas , Áustria , Fazendeiros , Humanos , Opinião Pública
12.
Proc Natl Acad Sci U S A ; 111(20): 7236-41, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24778243

RESUMO

This study examines whether policies to encourage cattle ranching intensification in Brazil can abate global greenhouse gas (GHG) emissions by sparing land from deforestation. We use an economic model of global land use to investigate, from 2010 to 2030, the global agricultural outcomes, land use changes, and GHG abatement resulting from two potential Brazilian policies: a tax on cattle from conventional pasture and a subsidy for cattle from semi-intensive pasture. We find that under either policy, Brazil could achieve considerable sparing of forests and abatement of GHGs, in line with its national policy targets. The land spared, particularly under the tax, is far less than proportional to the productivity increased. However, the tax, despite prompting less adoption of semi-intensive ranching, delivers slightly more forest sparing and GHG abatement than the subsidy. This difference is explained by increased deforestation associated with increased beef consumption under the subsidy and reduced deforestation associated with reduced beef consumption under the tax. Complementary policies to directly limit deforestation could help limit these effects. GHG abatement from either the tax or subsidy appears inexpensive but, over time, the tax would become cheaper than the subsidy. A revenue-neutral combination of the policies could be an element of a sustainable development strategy for Brazil and other emerging economies seeking to balance agricultural development and forest protection.


Assuntos
Agricultura/métodos , Poluição do Ar/estatística & dados numéricos , Criação de Animais Domésticos/estatística & dados numéricos , Pegada de Carbono/estatística & dados numéricos , Efeito Estufa , Poluição do Ar/análise , Criação de Animais Domésticos/economia , Animais , Brasil , Carbono/análise , Bovinos , Simulação por Computador , Conservação dos Recursos Naturais/economia , Agricultura Florestal , Impostos
13.
Proc Natl Acad Sci U S A ; 111(9): 3268-73, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24344314

RESUMO

Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies.


Assuntos
Agricultura/métodos , Mudança Climática , Produtos Agrícolas/crescimento & desenvolvimento , Modelos Teóricos , Nitrogênio/análise , Agricultura/estatística & dados numéricos , Simulação por Computador , Previsões , Geografia , Medição de Risco , Temperatura
14.
Proc Natl Acad Sci U S A ; 111(10): 3709-14, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24567375

RESUMO

Livestock are responsible for 12% of anthropogenic greenhouse gas emissions. Sustainable intensification of livestock production systems might become a key climate mitigation technology. However, livestock production systems vary substantially, making the implementation of climate mitigation policies a formidable challenge. Here, we provide results from an economic model using a detailed and high-resolution representation of livestock production systems. We project that by 2030 autonomous transitions toward more efficient systems would decrease emissions by 736 million metric tons of carbon dioxide equivalent per year (MtCO2e⋅y(-1)), mainly through avoided emissions from the conversion of 162 Mha of natural land. A moderate mitigation policy targeting emissions from both the agricultural and land-use change sectors with a carbon price of US$10 per tCO2e could lead to an abatement of 3,223 MtCO2e⋅y(-1). Livestock system transitions would contribute 21% of the total abatement, intra- and interregional relocation of livestock production another 40%, and all other mechanisms would add 39%. A comparable abatement of 3,068 MtCO2e⋅y(-1) could be achieved also with a policy targeting only emissions from land-use change. Stringent climate policies might lead to reductions in food availability of up to 200 kcal per capita per day globally. We find that mitigation policies targeting emissions from land-use change are 5 to 10 times more efficient--measured in "total abatement calorie cost"--than policies targeting emissions from livestock only. Thus, fostering transitions toward more productive livestock production systems in combination with climate policies targeting the land-use change appears to be the most efficient lever to deliver desirable climate and food availability outcomes.


Assuntos
Agricultura/métodos , Poluição do Ar/prevenção & controle , Mudança Climática , Conservação dos Recursos Naturais/métodos , Gado/crescimento & desenvolvimento , Modelos Biológicos , Animais , Simulação por Computador , Gado/metabolismo
15.
Proc Natl Acad Sci U S A ; 111(9): 3239-44, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24344283

RESUMO

We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400-1,400 Pcal (8-24% of present-day total) when CO2 fertilization effects are accounted for or 1,400-2,600 Pcal (24-43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20-60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600-2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required.


Assuntos
Irrigação Agrícola/métodos , Agricultura/métodos , Mudança Climática , Modelos Teóricos , Abastecimento de Água/estatística & dados numéricos , Irrigação Agrícola/economia , Agricultura/economia , Dióxido de Carbono/análise , Simulação por Computador , Previsões
16.
Proc Natl Acad Sci U S A ; 111(9): 3274-9, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24344285

RESUMO

Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.


Assuntos
Agricultura/economia , Mudança Climática , Produtos Agrícolas/crescimento & desenvolvimento , Modelos Econômicos , Dióxido de Carbono/análise , Comércio/estatística & dados numéricos , Simulação por Computador , Previsões , Humanos
17.
Proc Natl Acad Sci U S A ; 111(9): 3233-8, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24344270

RESUMO

The impacts of global climate change on different aspects of humanity's diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3 °C above the 1980-2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4 °C. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty.


Assuntos
Conservação dos Recursos Naturais/métodos , Meio Ambiente , Aquecimento Global/estatística & dados numéricos , Modelos Teóricos , Política Pública , Agricultura/estatística & dados numéricos , Simulação por Computador , Ecossistema , Geografia , Aquecimento Global/economia , Humanos , Malária/epidemiologia , Temperatura , Abastecimento de Água/estatística & dados numéricos
18.
J Environ Manage ; 111: 178-86, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22906701

RESUMO

Identifying significant determinants of groundwater nitrate contamination is critical in order to define sensible agri-environmental indicators that support the design, enforcement, and monitoring of regulatory policies. We use data from approximately 1200 Austrian municipalities to provide a detailed statistical analysis of (1) the factors influencing groundwater nitrate contamination and (2) the predictive capacity of the Gross Nitrogen Balance, one of the most commonly used agri-environmental indicators. We find that the percentage of cropland in a given region correlates positively with nitrate concentration in groundwater. Additionally, environmental characteristics such as temperature and precipitation are important co-factors. Higher average temperatures result in lower nitrate contamination of groundwater, possibly due to increased evapotranspiration. Higher average precipitation dilutes nitrates in the soil, further reducing groundwater nitrate concentration. Finally, we assess whether the Gross Nitrogen Balance is a valid predictor of groundwater nitrate contamination. Our regression analysis reveals that the Gross Nitrogen Balance is a statistically significant predictor for nitrate contamination. We also show that its predictive power can be improved if we account for average regional precipitation. The Gross Nitrogen Balance predicts nitrate contamination in groundwater more precisely in regions with higher average precipitation.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/análise , Nitratos/análise , Nitrogênio/análise , Poluição Química da Água/análise , Áustria , Análise de Regressão , Estações do Ano
19.
Nat Commun ; 12(1): 1235, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623028

RESUMO

Irrigation is the largest sector of human water use and an important option for increasing crop production and reducing drought impacts. However, the potential for irrigation to contribute to global crop yields remains uncertain. Here, we quantify this contribution for wheat and maize at global scale by developing a Bayesian framework integrating empirical estimates and gridded global crop models on new maps of the relative difference between attainable rainfed and irrigated yield (ΔY). At global scale, ΔY is 34 ± 9% for wheat and 22 ± 13% for maize, with large spatial differences driven more by patterns of precipitation than that of evaporative demand. Comparing irrigation demands with renewable water supply, we find 30-47% of contemporary rainfed agriculture of wheat and maize cannot achieve yield gap closure utilizing current river discharge, unless more water diversion projects are set in place, putting into question the potential of irrigation to mitigate climate change impacts.

20.
Sci Total Environ ; 801: 149619, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34438150

RESUMO

River systems have undergone a massive transformation since the Anthropocene. The natural properties of river systems have been drastically altered and reshaped, limiting the use of management frameworks, their scientific knowledge base and their ability to provide adequate solutions for current problems and those of the future, such as climate change, biodiversity crisis and increased demands for water resources. To address these challenges, a socioecologically driven research agenda for river systems that complements current approaches is needed and proposed. The implementation of the concepts of social metabolism and the colonisation of natural systems into existing concepts can provide a new basis to analyse the coevolutionary coupling of social systems with ecological and hydrological (i.e., 'socio-ecohydrological') systems within rivers. To operationalize this research agenda, we highlight four initial core topics defined as research clusters (RCs) to address specific system properties in an integrative manner. The colonisation of natural systems by social systems is seen as a significant driver of the transformation processes in river systems. These transformation processes are influenced by connectivity (RC 1), which primarily addresses biophysical aspects and governance (RC 2), which focuses on the changes in social systems. The metabolism (RC 3) and vulnerability (RC 4) of the social and natural systems are significant aspects of the coupling of social systems and ecohydrological systems with investments, energy, resources, services and associated risks and impacts. This socio-ecohydrological research agenda complements other recent approaches, such as 'socio-ecological', 'socio-hydrological' or 'socio-geomorphological' systems, by focusing on the coupling of social systems with natural systems in rivers and thus, by viewing the socioeconomic features of river systems as being just as important as their natural characteristics. The proposed research agenda builds on interdisciplinarity and transdisciplinarity and requires the implementation of such programmes into the education of a new generation of river system scientists, managers and engineers who are aware of the transformation processes and the coupling between systems.


Assuntos
Rios , Recursos Hídricos , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Previsões , Hidrologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA