Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Infection ; 52(3): 1165-1169, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38480644

RESUMO

In the last 10 years, an increase in tularemia cases has been observed in both humans and animals in Switzerland. In these, infection with Francisella tularensis, the causative agent of the zoonotic disease tularemia, can occur through arthropod vectors or contact to infected animals or exposure to contaminated environmental sources. Currently, we are only able to postulate potential aetiologies: (i) behavioral changes of humans with more exposure to endemic habitats of infected arthropod vectors; (ii) an increased rate of tularemia infected ticks; (iii) increasing number and geographical regions of tick biotopes; (iv) increasing and/or more diverse reservoir populations; (v) increasing presence of bacteria in the environment; (vi) raised awareness and increased testing among physicians; (vii) improved laboratory techniques including molecular testing. To approach these questions, a one-health strategy is necessary. A functioning collaboration between public health, human medicine, and diagnostic and veterinary units for the control of tularemia must be established. Furthermore, the public should be included within citizen-supported-science-projects.


Assuntos
Francisella tularensis , Saúde Única , Tularemia , Tularemia/epidemiologia , Tularemia/transmissão , Tularemia/diagnóstico , Suíça/epidemiologia , Humanos , Animais , Zoonoses/transmissão , Zoonoses/epidemiologia , Zoonoses/microbiologia , Carrapatos/microbiologia , Vetores Artrópodes/microbiologia
2.
J Infect Dis ; 218(suppl_5): S305-S311, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29982580

RESUMO

Many human ebolavirus outbreaks have been linked to contact with wildlife including nonhuman primates and bats, which are assumed to serve as host species. However, it is largely unknown to what extent other animal species, particularly livestock, are involved in the transmission cycle or act as additional hosts for filoviruses. Pigs were identified as a susceptible host for Reston virus with subsequent transmission to humans reported in the Philippines. To date, there is no evidence of natural Ebola virus (EBOV) infection in pigs, although pigs were shown to be susceptible to EBOV infection under experimental settings. To investigate the potential role of pigs in the ecology of EBOV, we analyzed 400 porcine serum samples from Sierra Leone for the presence of ebolavirus-specific antibodies. Three samples reacted with ebolavirus nucleoproteins but had no neutralizing antibodies. Our results (1) suggest the circulation of ebolaviruses in swine in Sierra Leone that are antigenically related but not identical to EBOV and (2) could represent undiscovered ebolaviruses with unknown pathogenic and/or zoonotic potential.


Assuntos
Ebolavirus/genética , Doença pelo Vírus Ebola/virologia , Suínos/virologia , Animais , Animais Selvagens/sangue , Animais Selvagens/imunologia , Animais Selvagens/virologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Ebolavirus/imunologia , Feminino , Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/imunologia , Humanos , Masculino , Nucleoproteínas/imunologia , Filipinas , Soro/imunologia , Soro/virologia , Serra Leoa
3.
J Virol ; 90(16): 7268-7284, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27252530

RESUMO

UNLABELLED: A hallmark of Ebola virus (EBOV) infection is the formation of viral inclusions in the cytoplasm of infected cells. These viral inclusions contain the EBOV nucleocapsids and are sites of viral replication and nucleocapsid maturation. Although there is growing evidence that viral inclusions create a protected environment that fosters EBOV replication, little is known about their role in the host response to infection. The cellular stress response is an effective antiviral strategy that leads to stress granule (SG) formation and translational arrest mediated by the phosphorylation of a translation initiation factor, the α subunit of eukaryotic initiation factor 2 (eIF2α). Here, we show that selected SG proteins are sequestered within EBOV inclusions, where they form distinct granules that colocalize with viral RNA. These inclusion-bound (IB) granules are functionally and structurally different from canonical SGs. Formation of IB granules does not indicate translational arrest in the infected cells. We further show that EBOV does not induce formation of canonical SGs or eIF2α phosphorylation at any time postinfection but is unable to fully inhibit SG formation induced by different exogenous stressors, including sodium arsenite, heat, and hippuristanol. Despite the sequestration of SG marker proteins into IB granules, canonical SGs are unable to form within inclusions, which we propose might be mediated by a novel function of VP35, which disrupts SG formation. This function is independent of VP35's RNA binding activity. Further studies aim to reveal the mechanism for SG protein sequestration and precise function within inclusions. IMPORTANCE: Although progress has been made developing antiviral therapeutics and vaccines against the highly pathogenic Ebola virus (EBOV), the cellular mechanisms involved in EBOV infection are still largely unknown. To better understand these intracellular events, we investigated the cellular stress response, an antiviral pathway manipulated by many viruses. We show that EBOV does not induce formation of stress granules (SGs) in infected cells and is therefore unrestricted by their concomitant translational arrest. We identified SG proteins sequestered within viral inclusions, which did not impair protein translation. We further show that EBOV is unable to block SG formation triggered by exogenous stress early in infection. These findings provide insight into potential targets of therapeutic intervention. Additionally, we identified a novel function of the interferon antagonist VP35, which is able to disrupt SG formation.


Assuntos
Citoplasma/virologia , Ebolavirus/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Fatores Imunológicos/análise , Corpos de Inclusão Viral/virologia , Estresse Fisiológico , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , Linhagem Celular , Grânulos Citoplasmáticos/metabolismo , Ebolavirus/imunologia , Proteínas de Choque Térmico/análise , Humanos , Corpos de Inclusão Viral/química
4.
J Virol ; 87(10): 5384-96, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23468487

RESUMO

Since viruses rely on functional cellular machinery for efficient propagation, apoptosis is an important mechanism to fight viral infections. In this study, we sought to determine the mechanism of cell death caused by Ebola virus (EBOV) infection by assaying for multiple stages of apoptosis and hallmarks of necrosis. Our data indicate that EBOV does not induce apoptosis in infected cells but rather leads to a nonapoptotic form of cell death. Ultrastructural analysis confirmed necrotic cell death of EBOV-infected cells. To investigate if EBOV blocks the induction of apoptosis, infected cells were treated with different apoptosis-inducing agents. Surprisingly, EBOV-infected cells remained sensitive to apoptosis induced by external stimuli. Neither receptor- nor mitochondrion-mediated apoptosis signaling was inhibited in EBOV infection. Although double-stranded RNA (dsRNA)-induced activation of protein kinase R (PKR) was blocked in EBOV-infected cells, induction of apoptosis mediated by dsRNA was not suppressed. When EBOV-infected cells were treated with dsRNA-dependent caspase recruiter (dsCARE), an antiviral protein that selectively induces apoptosis in cells containing dsRNA, virus titers were strongly reduced. These data show that the inability of EBOV to block apoptotic pathways may open up new strategies toward the development of antiviral therapeutics.


Assuntos
Morte Celular , Ebolavirus/imunologia , Ebolavirus/patogenicidade , Transdução de Sinais , Animais , Chlorocebus aethiops , Células HeLa , Humanos , Células Vero
5.
Heliyon ; 10(10): e31490, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38826712

RESUMO

Due to the discontinuation of routine smallpox vaccination after its eradication in 1980, a large part of the human population remains naïve against smallpox and other members of the orthopoxvirus genus. As a part of biosafety personnel protection programs, laboratory workers receive prophylactic vaccinations against diverse infectious agents, including smallpox. Here, we studied the levels of cross-protecting neutralizing antibodies as well as total IgG induced by either first- or third-generation smallpox vaccines against Monkeypox virus, using a clinical isolate from the 2022 outbreak. Serum neutralization tests indicated better overall neutralization capacity after vaccination with first-generation smallpox vaccines, compared to an attenuated third-generation vaccine. Results obtained from total IgG ELISA, however, did not show higher induction of orthopoxvirus-specific IgGs in first-generation vaccine recipients. Taken together, our results indicate a lower level of cross-protecting neutralizing antibodies against Monkeypox virus in recipients of third-generation smallpox vaccine compared to first-generation vaccine recipients, although total IgG levels were comparable.

6.
Open Forum Infect Dis ; 9(7): ofac292, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35873298

RESUMO

Background: The incidence of tularemia has recently increased throughout Europe. Pediatric tularemia typically presents with ulceroglandular or glandular disease and requires antimicrobial therapy not used in the empirical management of childhood acute lymphadenitis. We describe the clinical presentation and course in a case series comprising 20 patients. Methods: This is a retrospective analysis of a single-center case series of microbiologically confirmed tularemia in patients <16 years of age diagnosed between 2010 and 2021. Results: Nineteen patients (95%) presented with ulceroglandular (n = 14) or glandular disease (n = 5), respectively. A characteristic entry site lesion (eschar) was present in 14 (74%). Fever was present at illness onset in 15 patients (75%) and disappeared in all patients before targeted therapy was initiated. The diagnosis was confirmed by serology in 18 patients (90%). While immunochromatography was positive as early as on day 7, a microagglutination test titer 1:≥160 was found no earlier than on day 13. Sixteen patients (80%) were initially treated with an antimicrobial agent ineffective against F. tularensis. The median delay (range) from illness onset to initiation of targeted therapy was 12 (6-40) days. Surgical incision and drainage were ultimately performed in 12 patients (60%). Conclusions: Pediatric tularemia in Switzerland usually presents with early, self-limiting fever and a characteristic entry site lesion with regional lymphadenopathy draining the scalp or legs. Particularly in association with a tick exposure history, this presentation may allow early first-line therapy with an agent specifically targeting F. tularensis, potentially obviating the need for surgical therapy.

7.
New Microbes New Infect ; 49-50: 101040, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36385748

RESUMO

The Bacillus cereus-group (B. cereus sensu lato) includes common, usually avirulent species, often considered contaminants of patient samples in routine microbiological diagnostics, as well as the highly virulent B. anthracis. Here we describe 16 isolates from 15 patients, identified as B. cereus-group using a MALDI-TOF MS standard database. Whole genome sequencing (WGS) analysis identified five of the isolates as B. anthracis species not carrying the typical virulence plasmids pXO1 and pXO2, four isolates as B. paranthracis, three as B. cereus sensu stricto, two as B. thuringiensis, one as B. mobilis, and one isolate represents a previously undefined species of Bacillus (B. basilensis sp. nov.). More detailed analysis using alternative MALDI-TOF MS databases, biochemical phenotyping, and diagnostic PCRs, gave further conflicting species results. These cases highlight the difficulties in identifying avirulent B. anthracis within the B. cereus-group using standard methods. WGS and alternative MALDI-TOF MS databases offer more accurate species identification, but so far are not routinely applied. We discuss the diagnostic resolution and discrepancies of various identification methods.

8.
J Virol ; 83(9): 4508-19, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19225002

RESUMO

We have previously shown that the first transcription start signal (TSS) of Zaire Ebola virus (ZEBOV) is involved in formation of an RNA secondary structure regulating VP30-dependent transcription activation. Interestingly, transcription of Marburg virus (MARV) minigenomes occurs independently of VP30. In this study, we analyzed the structure of the MARV 3' noncoding region and its influence on VP30 necessity. Secondary structure formation of the TSS of the first gene was experimentally determined and showed substantial differences from the structure formed by the ZEBOV TSS. Chimeric MARV minigenomes mimicking the ZEBOV-specific RNA secondary structure were neither transcribed nor replicated. Mapping of the MARV genomic replication promoter revealed that the region homologous to the sequence involved in formation of the regulatory ZEBOV RNA structure is part of the MARV promoter. The MARV promoter is contained within the first 70 nucleotides of the genome and consists of two elements separated by a spacer region, comprising the TSS of the first gene. Mutations within the spacer abolished transcription activity and led to increased replication, indicating competitive transcription and replication initiation. The second promoter element is located within the nontranslated region of the first gene and consists of a stretch of three UN(5) hexamers. Recombinant full-length MARV clones, in which the three conserved U residues were substituted, could not be rescued, underlining the importance of the UN(5) hexamers for replication activity. Our data suggest that differences in the structure of the genomic replication promoters might account for the different transcription strategies of Marburg and Ebola viruses.


Assuntos
Ebolavirus/química , Ebolavirus/metabolismo , Marburgvirus/química , Marburgvirus/metabolismo , Conformação de Ácido Nucleico , RNA não Traduzido/genética , Animais , Sequência de Bases , Linhagem Celular , Chlorocebus aethiops , Ebolavirus/genética , Regulação Viral da Expressão Gênica , Genoma Viral/genética , Humanos , Marburgvirus/genética , Dados de Sequência Molecular , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Alinhamento de Sequência , Transcrição Gênica/genética , Ativação Transcricional , Replicação Viral
9.
J Immunol Methods ; 460: 36-44, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29894749

RESUMO

Rift Valley fever virus is a mosquito-borne virus which is associated with acute hemorrhagic fever leading to large outbreaks among ruminants and humans in Africa and the Arabian Peninsula. RVFV circulates between mosquitoes, ruminants, camels and humans, which requires divergent amplification and maintenance strategies that have not been fully explored on the cellular and molecular level. We therefore assessed monoclonal antibodies for their applicability to monitor the expression pattern and kinetics of viral proteins in different RVFV infected cell species. Sequences of RVFV vaccine strain MP-12 were used in a bacterial expression system to produce recombinant non-structural proteins directed to NSs and NSm. After immunization of balb/c mice a set of monoclonal antibodies were generated and extensively characterized. The kinetics of RVFV proteins in vertebrate (Vero76) and mosquito-derived (C6/36) cells were evaluated with monoclonal antibodies against the nucleocapsid protein (NP) and the glycoproteins (Gn and Gc) as well as with the newly generated NSs and NSm derived monoclonal antibodies. Significant differences of viral protein distribution and accumulation in vertebrate compared to mosquito-derived cells could be demonstrated. Differences were observed for the nonstructural NSm and most intriguingly for the NSs protein indicating significant divergency of replication strategies of RVFV in Vero 76 cells and C6/36 cells. The described monoclonal antibodies are therefore powerful tools to elucidate the discrepancies of virus replication and interaction within the mammalian host compared to the mosquito vector.


Assuntos
Anticorpos Monoclonais Murinos/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Vírus da Febre do Vale do Rift/imunologia , Proteínas não Estruturais Virais/imunologia , Animais , Antígenos Virais/genética , Chlorocebus aethiops , Técnica Indireta de Fluorescência para Anticorpo , Camundongos , Camundongos Endogâmicos BALB C , Vírus da Febre do Vale do Rift/genética , Células Vero , Proteínas não Estruturais Virais/genética
10.
Methods Mol Biol ; 1628: 211-225, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28573623

RESUMO

In this chapter, the use of immunofluorescence analysis as a tool to examine stress granule (SG) formation in Ebola virus (EBOV)-infected cells is described. The following protocol focuses on the process of inducing and analyzing the cellular stress response, including treatment of cells with inducers and inhibitors of the SG formation, and also describes EBOV infection, DNA transfection, and the usage of different cell lines.


Assuntos
Ebolavirus/metabolismo , Imunofluorescência/métodos , Estresse Fisiológico/genética , Anticorpos Antivirais/isolamento & purificação , Linhagem Celular , Ebolavirus/crescimento & desenvolvimento , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/fisiopatologia , Doença pelo Vírus Ebola/virologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA